• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

HaipengXiong/weighted-hausdorff-loss: A loss function (Weighted Hausdorff Distan ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

HaipengXiong/weighted-hausdorff-loss

开源软件地址(OpenSource Url):

https://github.com/HaipengXiong/weighted-hausdorff-loss

开源编程语言(OpenSource Language):

Python 100.0%

开源软件介绍(OpenSource Introduction):

A loss function (Weighted Hausdorff Distance)
for object localization

This repository contains the PyTorch implementation of the Weighted Hausdorff Loss described in this paper: Weighted Hausdorff Distance: A Loss Function For Object Localization

Some object centers

Abstract

Recent advances in Convolutional Neural Networks (CNN) have achieved remarkable results in localizing objects in images. In these networks, the training procedure usually requires providing bounding boxes or the maximum number of expected objects. In this paper, we address the task of estimating object locations without annotated bounding boxes, which are typically hand-drawn and time consuming to label. We propose a loss function that can be used in any Fully Convolutional Network (FCN) to estimate object locations. This loss function is a modification of the Average Hausdorff Distance between two unordered sets of points. The proposed method does not require one to "guess" the maximum number of objects in the image, and has no notion of bounding boxes, region proposals, or sliding windows. We evaluate our method with three datasets designed to locate people's heads, pupil centers and plant centers. We report an average precision and recall of 94% for the three datasets, and an average location error of 6 pixels in 256x256 images.

Citation

J. Ribera, D. Güera, Y. Chen, E. Delp, "Weighted Hausdorff Distance: A Loss Function For Object Localization", arXiv preprint arXiv:1806.07564, June 2018

@article{whd-loss,
  title={Weighted Hausdorff Distance: A Loss Function For Object Localization},
  author={J. Ribera and D. G{\"u}era and Y. Chen and E. Delp},
  journal={arXiv:1806.07564},
  month={June},
  year={2018}
}

Examples

Results and estimated object centers

Datasets

The datasets used in the paper can be downloaded from these links:

Code

The code used for the Arxiv submission corresponds to the tag used-for-arxiv-submission. If you wish to reproduce the results, checkout that tag with git checkout used-for-arxiv-submission. The master branch is the latest version available.

Installation

Use conda to recreate the environment provided with the code:

conda env create -f environment.yml

and install the tool:

pip install .

Usage

Activate the environment:

conda activate object-locator

Run this to get help (usage instructions):

python -m object-locator.locate -h
python -m object-locator.train -h

Example:

python -m object-locator.locate \
       --dataset DIRECTORY \
       --out DIRECTORY \
       --model CHECKPOINTS \
       --evaluate \
       --no-gpu \
       --radius 5

python -m object-locator.train \
       --train-dir ~/data/20160613_F54_training_256x256 \
       --batch-size 32 \
       --env-name sorghum \
       --lr 1e-3 \
       --val-dir ~/data/plant_counts_random_patches/20160613_F54_validation_256x256 \
       --optim Adam \
       --save unet_model.ckpt

Uninstall

conda deactivate object-locator
conda env remove --name object-locator



鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap