Writing a recursive function without naming it is a problem that is as old as computer science itself (even older, actually, since λ-calculus predates computer science), since in λ-calculus all functions are anonymous, and yet you still need recursion.
The solution is to use a fixpoint combinator, usually the Y combinator. This looks something like this:
(y =>
y(
givenFact =>
n =>
n < 2 ? 1 : n * givenFact(n-1)
)(5)
)(le =>
(f =>
f(f)
)(f =>
le(x => (f(f))(x))
)
);
This will compute the factorial of 5
recursively.
Note: the code is heavily based on this: The Y Combinator explained with JavaScript. All credit should go to the original author. I mostly just "harmonized" (is that what you call refactoring old code with new features from ES/Harmony?) it.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…