A rotated vector can be described as a product of a rotation matrix with that vector. The German Wikipedia page on pitch, roll and yaw describes the rotation matrix for given Euler rotation angles.
With that information, the rotation of all points with the same angles can be written as JavaScript function, where the points array is global:
function rotate(pitch, roll, yaw) {
var cosa = Math.cos(yaw);
var sina = Math.sin(yaw);
var cosb = Math.cos(pitch);
var sinb = Math.sin(pitch);
var cosc = Math.cos(roll);
var sinc = Math.sin(roll);
var Axx = cosa*cosb;
var Axy = cosa*sinb*sinc - sina*cosc;
var Axz = cosa*sinb*cosc + sina*sinc;
var Ayx = sina*cosb;
var Ayy = sina*sinb*sinc + cosa*cosc;
var Ayz = sina*sinb*cosc - cosa*sinc;
var Azx = -sinb;
var Azy = cosb*sinc;
var Azz = cosb*cosc;
for (var i = 0; i < points.length; i++) {
var px = points[i].x;
var py = points[i].y;
var pz = points[i].z;
points[i].x = Axx*px + Axy*py + Axz*pz;
points[i].y = Ayx*px + Ayy*py + Ayz*pz;
points[i].z = Azx*px + Azy*py + Azz*pz;
}
}
Most of that is setting up the rotation matrix as described in the article. The last three lines inside the loop are the matrix multiplication. You have made a point of not wanting to get into matrices, but that's hardly intimidating, is it? Sooner or later you will encounter more matrices and you should be prepared to deal with them. The stuff you need – multiplication, mainly – is simple. The more complicated stuff like inverting matrices is not needed for your requirements.
Anyway, that performs reasonably fast for 300,000 points. I was able to rotate a point cloud of that size and render it on a 1000px × 1000px canvas in about 10ms.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…