本文整理汇总了Python中expWorkbench.ModelEnsemble类的典型用法代码示例。如果您正苦于以下问题:Python ModelEnsemble类的具体用法?Python ModelEnsemble怎么用?Python ModelEnsemble使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了ModelEnsemble类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: transition_test
def transition_test():
model = EnergyTrans(r"..\..\..\models\EnergyTrans", "fluCase")
ensemble = ModelEnsemble()
ensemble.set_model_structure(model)
ensemble.perform_experiments(cases=10, callback=HDF5Callback)
开发者ID:rahalim,项目名称:EMAworkbench,代码行数:7,代码来源:pytable_test.py
示例2: test_optimization
def test_optimization():
ema_logging.log_to_stderr(ema_logging.INFO)
model = FluModel(r'..\data', "fluCase")
ensemble = ModelEnsemble()
ensemble.set_model_structure(model)
ensemble.parallel=True
# ensemble.processes = 12
stats, pop = ensemble.perform_outcome_optimization(obj_function = obj_function_multi,
reporting_interval=10,
weights=(MAXIMIZE, MAXIMIZE),
pop_size=100,
nr_of_generations=5,
crossover_rate=0.5,
mutation_rate=0.05)
res = stats.hall_of_fame.keys
x = [entry.values[0] for entry in res]
y = [entry.values[1] for entry in res]
print len(x), len(y)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(x,y)
ax.set_ylabel("deceased population")
ax.set_xlabel("infected fraction")
plt.show()
开发者ID:,项目名称:,代码行数:31,代码来源:
示例3: flu_test
def flu_test():
model = FluModel(r"..\..\..\models\flu", "fluCase")
ensemble = ModelEnsemble()
ensemble.set_model_structure(model)
ensemble.perform_experiments(cases=10, callback=HDF5Callback)
开发者ID:rahalim,项目名称:EMAworkbench,代码行数:7,代码来源:pytable_test.py
示例4: test_inspect
def test_inspect():
import inspect_test
model = FluModel(r'..\..\..\models\flu', "fluCase")
ensemble = ModelEnsemble()
ensemble.set_model_structure(model)
ensemble.perform_experiments(cases = 10,
callback=inspect_test.InspectCallback)
开发者ID:,项目名称:,代码行数:8,代码来源:
示例5: perform_experiments
def perform_experiments():
ema_logging.log_to_stderr(level=ema_logging.INFO)
model = SalinizationModel(r"C:\workspace\EMA-workbench\models\salinization", "verzilting")
model.step = 4
ensemble = ModelEnsemble()
ensemble.set_model_structure(model)
ensemble.parallel = True
nr_of_experiments = 10000
results = ensemble.perform_experiments(nr_of_experiments)
return results
开发者ID:canerhamarat,项目名称:EMAworkbench,代码行数:12,代码来源:salinization_example.py
示例6: test_save_results
def test_save_results():
os.remove("test.h5")
nrOfExperiments = 10
fileName = "test.h5"
experimentName = "one_exp_test"
ensemble = ModelEnsemble()
ensemble.set_model_structure(FluModel(r"..\..\..\models\flu", "fluCase"))
ensemble.perform_experiments(
nrOfExperiments, callback=HDF5Callback, fileName=fileName, experimentName=experimentName
)
开发者ID:rahalim,项目名称:EMAworkbench,代码行数:13,代码来源:pytable_test.py
示例7: test_running_lookup_uncertainties
def test_running_lookup_uncertainties(self):
'''
This is the more comprehensive test, given that the lookup
uncertainty replaces itself with a bunch of other uncertainties, check
whether we can successfully run a set of experiments and get results
back. We assert that the uncertainties are correctly replaced by
analyzing the experiments array.
'''
model = LookupTestModel( r'../models/', 'lookupTestModel')
#model.step = 4 #reduce data to be stored
ensemble = ModelEnsemble()
ensemble.set_model_structure(model)
ensemble.perform_experiments(10)
开发者ID:epruyt,项目名称:EMAworkbench,代码行数:16,代码来源:test_vensim.py
示例8: test_vensim_model
def test_vensim_model(self):
#instantiate a model
wd = r'../models'
model = VensimExampleModel(wd, "simpleModel")
#instantiate an ensemble
ensemble = ModelEnsemble()
#set the model on the ensemble
ensemble.set_model_structure(model)
nr_runs = 10
experiments, outcomes = ensemble.perform_experiments(nr_runs)
self.assertEqual(experiments.shape[0], nr_runs)
self.assertIn('TIME', outcomes.keys())
self.assertIn(model.outcomes[0].name, outcomes.keys())
开发者ID:epruyt,项目名称:EMAworkbench,代码行数:17,代码来源:test_vensim.py
示例9: test_optimization
def test_optimization():
ema_logging.log_to_stderr(ema_logging.INFO)
model = FluModel(r'..\data', "fluCase")
ensemble = ModelEnsemble()
ensemble.set_model_structure(model)
ensemble.parallel=True
stats, pop = ensemble.perform_outcome_optimization(obj_function = obj_function_multi,
reporting_interval=100,
weights=(MAXIMIZE, MAXIMIZE),
pop_size=100,
nr_of_generations=20,
crossover_rate=0.5,
mutation_rate=0.05,
caching=False)
res = stats.hall_of_fame.keys
print len(stats.tried_solutions.values())
开发者ID:bram32,项目名称:EMAworkbench,代码行数:20,代码来源:test_outcome_optimization.py
示例10: maxmin_optimize
def maxmin_optimize():
ema_logging.log_to_stderr(ema_logging.INFO)
model = TestModel("", 'simpleModel') #instantiate the model
ensemble = ModelEnsemble() #instantiate an ensemble
ensemble.set_model_structure(model) #set the model on the ensemble
ensemble.parallel = True
ensemble.processes = 12
def obj_function1(outcomes):
return outcomes['y']
policy_levers = { "L1": (0,1),
"L2": (0,1)}
results = ensemble.perform_maximin_optimization(obj_function1 = obj_function1,
policy_levers = policy_levers,
minimax1='minimize',
nrOfGenerations1=50,
nrOfPopMembers1=200,
minimax2 = "maximize",
nrOfGenerations2 = 50,
nrOfPopMembers2 = 100,
)
graph_errorbars_raw(results['stats'])
plt.show()
开发者ID:,项目名称:,代码行数:29,代码来源:
示例11: robust_optimize
def robust_optimize():
ema_logging.log_to_stderr(ema_logging.INFO)
model = TestModel("", 'simpleModel') #instantiate the model
ensemble = ModelEnsemble() #instantiate an ensemble
ensemble.set_model_structure(model) #set the model on the ensemble
policy_levers = { "L1": (0,1),
"L2": (0,1)}
def obj_func(results):
return np.average(results['y'])
results = ensemble.perform_robust_optimization(cases=1000,
obj_function=obj_func,
policy_levers=policy_levers,
minimax='minimize',
nrOfGenerations=50,
nrOfPopMembers=20 )
graph_errorbars_raw(results['stats'])
plt.show()
开发者ID:,项目名称:,代码行数:22,代码来源:
示例12: test_multiple_models
def test_multiple_models():
class Model1(ModelStructureInterface):
uncertainties = [ParameterUncertainty((0,1),"a"),
ParameterUncertainty((0,1),"b")]
outcomes = [Outcome("test")]
def model_init(self, policy, kwargs):
pass
def run_model(self, case):
self.output['test'] = 1
class Model2(ModelStructureInterface):
uncertainties = [ParameterUncertainty((0,1),"b"),
ParameterUncertainty((0,1),"c")]
outcomes = [Outcome("test")]
def model_init(self, policy, kwargs):
pass
def run_model(self, case):
self.output['test'] = 1
# os.remove('test.h5')
nrOfExperiments = 10
fileName = 'test.h5'
experimentName = "one_exp_test"
ensemble = ModelEnsemble()
ensemble.add_model_structure(Model1('', "test1"))
ensemble.add_model_structure(Model2('', "test2"))
ensemble.perform_experiments(nrOfExperiments,
callback=HDF5Callback,
fileName=fileName,
experimentName=experimentName)
开发者ID:,项目名称:,代码行数:39,代码来源:
示例13: test_optimization
def test_optimization():
ema_logging.log_to_stderr(ema_logging.INFO)
model = FluModel(r'../models', "fluCase")
ensemble = ModelEnsemble()
ensemble.set_model_structure(model)
ensemble.parallel=True
pop_size = 8
nr_of_generations = 10
eps = np.array([1e-3, 1e6])
stats, pop = ensemble.perform_outcome_optimization(obj_function = obj_function_multi,
algorithm=epsNSGA2,
reporting_interval=100,
weights=(MAXIMIZE, MAXIMIZE),
pop_size=pop_size,
nr_of_generations=nr_of_generations,
crossover_rate=0.8,
mutation_rate=0.05,
eps=eps)
fn = '../data/test optimization save.bz2'
开发者ID:epruyt,项目名称:EMAworkbench,代码行数:23,代码来源:test_outcome_optimization.py
示例14: test_tree
def test_tree():
log_to_stderr(level= INFO)
model = FluModel(r'..\..\models\flu', "fluCase")
ensemble = ModelEnsemble()
ensemble.parallel = True
ensemble.set_model_structure(model)
policies = [{'name': 'no policy',
'file': r'\FLUvensimV1basecase.vpm'},
{'name': 'static policy',
'file': r'\FLUvensimV1static.vpm'},
{'name': 'adaptive policy',
'file': r'\FLUvensimV1dynamic.vpm'}
]
ensemble.add_policies(policies)
results = ensemble.perform_experiments(10)
a_tree = tree(results, classify)
开发者ID:bram32,项目名称:EMAworkbench,代码行数:21,代码来源:test_orange_functions.py
示例15: test_feature_selection
def test_feature_selection():
log_to_stderr(level= INFO)
model = FluModel(r'..\..\models\flu', "fluCase")
ensemble = ModelEnsemble()
ensemble.parallel = True
ensemble.set_model_structure(model)
policies = [{'name': 'no policy',
'file': r'\FLUvensimV1basecase.vpm'},
{'name': 'static policy',
'file': r'\FLUvensimV1static.vpm'},
{'name': 'adaptive policy',
'file': r'\FLUvensimV1dynamic.vpm'}
]
ensemble.add_policies(policies)
results = ensemble.perform_experiments(5000)
results = feature_selection(results, classify)
for entry in results:
print entry[0] +"\t" + str(entry[1])
开发者ID:bram32,项目名称:EMAworkbench,代码行数:22,代码来源:test_orange_functions.py
示例16: outcome_optimize
def outcome_optimize():
ema_logging.log_to_stderr(ema_logging.INFO)
model = TestModel("", 'simpleModel') #instantiate the model
ensemble = ModelEnsemble() #instantiate an ensemble
ensemble.set_model_structure(model) #set the model on the ensemble
policy = {"name": "test",
"L1": 1,
"L2": 1}
ensemble.add_policy(policy)
def obj_func(results):
return results['y']
results = ensemble.perform_outcome_optimization(obj_function=obj_func,
minimax = 'minimize',
nrOfGenerations = 1000,
nrOfPopMembers = 10)
graph_errorbars_raw(results['stats'])
plt.show()
开发者ID:,项目名称:,代码行数:21,代码来源:
示例17: model_init
"normal contact rate region 2")]
def model_init(self, policy, kwargs):
'''initializes the model'''
try:
self.model_file = policy['file']
except KeyError:
ema_logging.warning("key 'file' not found in policy")
super(FluModel, self).model_init(policy, kwargs)
if __name__ == "__main__":
ema_logging.log_to_stderr(ema_logging.INFO)
model = FluModel(r'..\..\models\flu', "fluCase")
ensemble = ModelEnsemble()
ensemble.set_model_structure(model)
#add policies
policies = [{'name': 'no policy',
'file': r'\FLUvensimV1basecase.vpm'},
{'name': 'static policy',
'file': r'\FLUvensimV1static.vpm'},
{'name': 'adaptive policy',
'file': r'\FLUvensimV1dynamic.vpm'}
]
ensemble.add_policies(policies)
ensemble.parallel = True #turn on parallel processing
results = ensemble.perform_experiments(1000)
开发者ID:rahalim,项目名称:EMAworkbench,代码行数:31,代码来源:flu_vensim_example.py
示例18: ParameterUncertainty
"susceptible to immune population delay time region 1"),
ParameterUncertainty((0.5,2),
"susceptible to immune population delay time region 2"),
ParameterUncertainty((0.01, 5),
"root contact rate region 1"),
ParameterUncertainty((0.01, 5),
"root contact ratio region 2"),
ParameterUncertainty((0, 0.15),
"infection ratio region 1"),
ParameterUncertainty((0, 0.15),
"infection rate region 2"),
ParameterUncertainty((10, 100),
"normal contact rate region 1"),
ParameterUncertainty((10, 200),
"normal contact rate region 2")]
if __name__ == "__main__":
ema_logging.log_to_stderr(ema_logging.INFO)
model = FluModel(r'./models/flu', "fluCase")
ensemble = ModelEnsemble()
ensemble.set_model_structure(model)
ensemble.parallel = True #turn on parallel processing
nr_experiments = 1000
results = ensemble.perform_experiments(nr_experiments)
fh = r'./data/{} flu cases no policy.tar.gz'.format(nr_experiments)
save_results(results, fh)
开发者ID:epruyt,项目名称:EMAworkbench,代码行数:31,代码来源:flu_vensim_no_policy_example.py
示例19: ParameterUncertainty
ParameterUncertainty((0.45,0.55),
"tH"),
ParameterUncertainty((0.1,0.3),
"kk")]
#specification of the outcomes
outcomes = [Outcome("B4:B1076", time=True), #we can refer to a range in the normal way
Outcome("P_t", time=True)] # we can also use named range
#name of the sheet
sheet = "Sheet1"
#relative path to the Excel file
workbook = r'\excel example.xlsx'
if __name__ == "__main__":
ema_logging.log_to_stderr(level=ema_logging.INFO)
model = ExcelModel(r"./models/excelModel", "predatorPrey")
ensemble = ModelEnsemble()
ensemble.set_model_structure(model)
ensemble.parallel = True #turn on parallel computing
ensemble.processes = 2 #using only 2 cores
#run 100 experiments
nr_experiments = 100
results = ensemble.perform_experiments(nr_experiments)
开发者ID:epruyt,项目名称:EMAworkbench,代码行数:30,代码来源:excel_example.py
示例20: return
a_mean = np.mean(a)
b_mean = np.mean(b)
if a_mean < 0.5 or b_mean < 0.5:
return (np.inf,) * 2
else:
return a_mean, b_mean
if __name__ == "__main__":
ema_logging.log_to_stderr(ema_logging.INFO)
model = DummyModel(r"", "dummy")
np.random.seed(123456789)
ensemble = ModelEnsemble()
ensemble.set_model_structure(model)
policy_levers = {'Trigger a': {'type':'list', 'values':[0, 0.25, 0.5, 0.75, 1]},
'Trigger b': {'type':'list', 'values':[0, 0.25, 0.5, 0.75, 1]},
'Trigger c': {'type':'list', 'values':[0, 0.25, 0.5, 0.75, 1]}}
cases = ensemble._generate_samples(10, UNION)[0]
ensemble.add_policy({"name":None})
experiments = [entry for entry in ensemble._generate_experiments(cases)]
for entry in experiments:
entry.pop("model")
entry.pop("policy")
cases = experiments
开发者ID:rjplevin,项目名称:EMAworkbench,代码行数:29,代码来源:test_robust_optimization.py
注:本文中的expWorkbench.ModelEnsemble类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论