在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
开源软件名称(OpenSource Name):rasbt/mlxtend开源软件地址(OpenSource Url):https://github.com/rasbt/mlxtend开源编程语言(OpenSource Language):Python 99.7%开源软件介绍(OpenSource Introduction):Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2022 Links
Installing mlxtendPyPITo install mlxtend, just execute pip install mlxtend Alternatively, you could download the package manually from the Python Package Index https://pypi.python.org/pypi/mlxtend, unzip it, navigate into the package, and use the command: python setup.py install CondaIf you use conda, to install mlxtend just execute conda install -c conda-forge mlxtend Dev VersionThe mlxtend version on PyPI may always be one step behind; you can install the latest development version from the GitHub repository by executing pip install git+git://github.com/rasbt/mlxtend.git#egg=mlxtend Or, you can fork the GitHub repository from https://github.com/rasbt/mlxtend and install mlxtend from your local drive via python setup.py install Examplesimport numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import itertools
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from mlxtend.classifier import EnsembleVoteClassifier
from mlxtend.data import iris_data
from mlxtend.plotting import plot_decision_regions
# Initializing Classifiers
clf1 = LogisticRegression(random_state=0)
clf2 = RandomForestClassifier(random_state=0)
clf3 = SVC(random_state=0, probability=True)
eclf = EnsembleVoteClassifier(clfs=[clf1, clf2, clf3], weights=[2, 1, 1], voting='soft')
# Loading some example data
X, y = iris_data()
X = X[:,[0, 2]]
# Plotting Decision Regions
gs = gridspec.GridSpec(2, 2)
fig = plt.figure(figsize=(10, 8))
for clf, lab, grd in zip([clf1, clf2, clf3, eclf],
['Logistic Regression', 'Random Forest', 'RBF kernel SVM', 'Ensemble'],
itertools.product([0, 1], repeat=2)):
clf.fit(X, y)
ax = plt.subplot(gs[grd[0], grd[1]])
fig = plot_decision_regions(X=X, y=y, clf=clf, legend=2)
plt.title(lab)
plt.show() If you use mlxtend as part of your workflow in a scientific publication, please consider citing the mlxtend repository with the following DOI:
License
ContactThe best way to ask questions is via the GitHub Discussions channel. In case you encounter usage bugs, please don't hesitate to use the GitHub's issue tracker directly. |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论