• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

rapidsai/cudf: cuDF - GPU DataFrame Library

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

rapidsai/cudf

开源软件地址(OpenSource Url):

https://github.com/rapidsai/cudf

开源编程语言(OpenSource Language):

C++ 41.7%

开源软件介绍(OpenSource Introduction):

 cuDF - GPU DataFrames

Build Status

NOTE: For the latest stable README.md ensure you are on the main branch.

Resources

Overview

Built based on the Apache Arrow columnar memory format, cuDF is a GPU DataFrame library for loading, joining, aggregating, filtering, and otherwise manipulating data.

cuDF provides a pandas-like API that will be familiar to data engineers & data scientists, so they can use it to easily accelerate their workflows without going into the details of CUDA programming.

For example, the following snippet downloads a CSV, then uses the GPU to parse it into rows and columns and run calculations:

import cudf, requests
from io import StringIO

url = "https://github.com/plotly/datasets/raw/master/tips.csv"
content = requests.get(url).content.decode('utf-8')

tips_df = cudf.read_csv(StringIO(content))
tips_df['tip_percentage'] = tips_df['tip'] / tips_df['total_bill'] * 100

# display average tip by dining party size
print(tips_df.groupby('size').tip_percentage.mean())

Output:

size
1    21.729201548727808
2    16.571919173482897
3    15.215685473711837
4    14.594900639351332
5    14.149548965142023
6    15.622920072028379
Name: tip_percentage, dtype: float64

For additional examples, browse our complete API documentation, or check out our more detailed notebooks.

Quick Start

Please see the Demo Docker Repository, choosing a tag based on the NVIDIA CUDA version you’re running. This provides a ready to run Docker container with example notebooks and data, showcasing how you can utilize cuDF.

Installation

CUDA/GPU requirements

  • CUDA 11.0+
  • NVIDIA driver 450.80.02+
  • Pascal architecture or better (Compute Capability >=6.0)

Conda

cuDF can be installed with conda (miniconda, or the full Anaconda distribution) from the rapidsai channel:

For cudf version == 22.06 :

# for CUDA 11.0
conda install -c rapidsai -c nvidia -c numba -c conda-forge \
    cudf=22.06 python=3.9 cudatoolkit=11.0

# or, for CUDA 11.2
conda install -c rapidsai -c nvidia -c numba -c conda-forge \
    cudf=22.06 python=3.9 cudatoolkit=11.2

For the nightly version of cudf :

# for CUDA 11.0
conda install -c rapidsai-nightly -c nvidia -c numba -c conda-forge \
    cudf python=3.9 cudatoolkit=11.0

# or, for CUDA 11.2
conda install -c rapidsai-nightly -c nvidia -c numba -c conda-forge \
    cudf python=3.9 cudatoolkit=11.2

Note: cuDF is supported only on Linux, and with Python versions 3.8 and later.

See the Get RAPIDS version picker for more OS and version info.

Build/Install from Source

See build instructions.

Contributing

Please see our guide for contributing to cuDF.

Contact

Find out more details on the RAPIDS site

Open GPU Data Science

The RAPIDS suite of open source software libraries aim to enable execution of end-to-end data science and analytics pipelines entirely on GPUs. It relies on NVIDIA® CUDA® primitives for low-level compute optimization, but exposing that GPU parallelism and high-bandwidth memory speed through user-friendly Python interfaces.

Apache Arrow on GPU

The GPU version of Apache Arrow is a common API that enables efficient interchange of tabular data between processes running on the GPU. End-to-end computation on the GPU avoids unnecessary copying and converting of data off the GPU, reducing compute time and cost for high-performance analytics common in artificial intelligence workloads. As the name implies, cuDF uses the Apache Arrow columnar data format on the GPU. Currently, a subset of the features in Apache Arrow are supported.




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap