• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

cirosantilli/linux-kernel-module-cheat: The perfect emulation setup to study and ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

cirosantilli/linux-kernel-module-cheat

开源软件地址(OpenSource Url):

https://github.com/cirosantilli/linux-kernel-module-cheat

开源编程语言(OpenSource Language):

Python 39.3%

开源软件介绍(OpenSource Introduction):

Linux Kernel Module Cheat

64534859

The perfect emulation setup to study and develop the Linux kernel v5.9.2, kernel modules, QEMU, gem5 and x86_64, ARMv7 and ARMv8 userland and baremetal assembly, ANSI C, C++ and POSIX. GDB step debug and KGDB just work. Powered by Buildroot and crosstool-NG. Highly automated. Thoroughly documented. Automated tests. "Tested" in an Ubuntu 20.04 host.

The source code for this page is located at: https://github.com/cirosantilli/linux-kernel-module-cheat. Due to a GitHub limitation, this README is too long and not fully rendered on github.com, so either use:

Xinjiang prisoners sitting identified

1. --china

The most important functionality of this repository is the --china option, sample usage:

./setup
./run --china > index.html
firefox index.html

The secondary systems programming functionality is described on the sections below starting from Getting started.

Tiananmen cute girls

2. Getting started

Each child section describes a possible different setup for this repo.

If you don’t know which one to go for, start with QEMU Buildroot setup getting started.

Design goals of this project are documented at: [design-goals].

2.1. Should you waste your life with systems programming?

Being the hardcore person who fully understands an important complex system such as a computer, it does have a nice ring to it doesn’t it?

But before you dedicate your life to this nonsense, do consider the following points:

  • almost all contributions to the kernel are done by large companies, and if you are not an employee in one of them, you are likely not going to be able to do much.

    This can be inferred by the fact that the devices/ directory is by far the largest in the kernel.

    The kernel is of course just an interface to hardware, and the hardware developers start developing their kernel stuff even before specs are publicly released, both to help with hardware development and to have things working when the announcement is made.

    Furthermore, I believe that there are in-tree devices which have never been properly publicly documented. Linus is of course fine with this, since code == documentation for him, but it is not as easy for mere mortals.

    There are some less hardware bound higher level layers in the kernel which might not require being in a hardware company, and a few people must be living off it.

    But of course, those are heavily motivated by the underlying hardware characteristics, and it is very likely that most of the people working there were previously at a hardware company.

    In that sense, therefore, the kernel is not as open as one might want to believe.

    Of course, if there is some super useful and undocumented hardware that is just waiting there to be reverse engineered, then that’s a much juicier target :-)

  • it is impossible to become rich with this knowledge.

    This is partly implied by the fact that you need to be in a big company to make useful low level things, and therefore you will only be a tiny cog in the engine.

    The key problem is that the entry cost of hardware design is just too insanely high for startups in general.

  • Is learning this the most useful thing that you think can do for society?

    Or are you just learning it for job security and having a nice sounding title?

    I’m not a huge fan of the person, but I think Jobs said it right: https://www.youtube.com/watch?v=FF-tKLISfPE

    First determine the useful goal, and then backtrack down to the most efficient thing you can do to reach it.

  • there are two things that sadden me compared to physics-based engineering:

    • you will never become eternally famous. All tech disappears sooner or later, while laws of nature, at least as useful approximations, stay unchanged.

    • every problem that you face is caused by imperfections introduced by other humans.

      It is much easier to accept limitations of physics, and even natural selection in biology, which are not produced by a sentient being (?).

    Physics-based engineering, just like low level hardware, is of course completely closed source however, since wrestling against the laws of physics is about the most expensive thing humans can do, so there’s also a downside to it.

Are you fine with those points, and ready to continue wasting your life with this crap?

Good. In that case, read on, and let’s have some fun together ;-)

Related: [soft-topics].

2.2. QEMU Buildroot setup

2.2.1. QEMU Buildroot setup getting started

This setup has been tested on Ubuntu 20.04.

The Buildroot build is already broken on Ubuntu 21.04 onwards: #155, just use the Docker host setup setup in that case. We could fix it on Ubuntu 21.04, but it will break again inevitably later on.

For other host operating systems see: [supported-hosts].

Reserve 12Gb of disk and run:

git clone https://github.com/cirosantilli/linux-kernel-module-cheat
cd linux-kernel-module-cheat
./setup
./build --download-dependencies qemu-buildroot
./run

You don’t need to clone recursively even though we have .git submodules: download-dependencies fetches just the submodules that you need for this build to save time.

If something goes wrong, see: [common-build-issues] and use our issue tracker: https://github.com/cirosantilli/linux-kernel-module-cheat/issues

The initial build will take a while (30 minutes to 2 hours) to clone and build, see [benchmark-builds] for more details.

If you don’t want to wait, you could also try the following faster but much more limited methods:

but you will soon find that they are simply not enough if you anywhere near serious about systems programming.

After ./run, QEMU opens up leaving you in the /lkmc/ directory, and you can start playing with the kernel modules inside the simulated system:

insmod hello.ko
insmod hello2.ko
rmmod hello
rmmod hello2

This should print to the screen:

hello init
hello2 init
hello cleanup
hello2 cleanup

which are printk messages from init and cleanup methods of those modules.

Sources:

Quit QEMU with:

Ctrl-A X

All available modules can be found in the kernel_modules directory.

It is super easy to build for different CPU architectures, just use the --arch option:

./setup
./build --arch aarch64 --download-dependencies qemu-buildroot
./run --arch aarch64

To avoid typing --arch aarch64 many times, you can set the default arch as explained at: [default-command-line-arguments]

I now urge you to read the following sections which contain widely applicable information:

Once you use GDB step debug and tmux, your terminal will look a bit like this:

[    1.451857] input: AT Translated Set 2 keyboard as /devices/platform/i8042/s1│loading @0xffffffffc0000000: ../kernel_modules-1.0//timer.ko
[    1.454310] ledtrig-cpu: registered to indicate activity on CPUs             │(gdb) b lkmc_timer_callback
[    1.455621] usbcore: registered new interface driver usbhid                  │Breakpoint 1 at 0xffffffffc0000000: file /home/ciro/bak/git/linux-kernel-module
[    1.455811] usbhid: USB HID core driver                                      │-cheat/out/x86_64/buildroot/build/kernel_modules-1.0/./timer.c, line 28.
[    1.462044] NET: Registered protocol family 10                               │(gdb) c
[    1.467911] Segment Routing with IPv6                                        │Continuing.
[    1.468407] sit: IPv6, IPv4 and MPLS over IPv4 tunneling driver              │
[    1.470859] NET: Registered protocol family 17                               │Breakpoint 1, lkmc_timer_callback (data=0xffffffffc0002000 <mytimer>)
[    1.472017] 9pnet: Installing 9P2000 support                                 │    at /linux-kernel-module-cheat//out/x86_64/buildroot/build/
[    1.475461] sched_clock: Marking stable (1473574872, 0)->(1554017593, -80442)│kernel_modules-1.0/./timer.c:28
[    1.479419] ALSA device list:                                                │28      {
[    1.479567]   No soundcards found.                                           │(gdb) c
[    1.619187] ata2.00: ATAPI: QEMU DVD-ROM, 2.5+, max UDMA/100                 │Continuing.
[    1.622954] ata2.00: configured for MWDMA2                                   │
[    1.644048] scsi 1:0:0:0: CD-ROM            QEMU     QEMU DVD-ROM     2.5+ P5│Breakpoint 1, lkmc_timer_callback (data=0xffffffffc0002000 <mytimer>)
[    1.741966] tsc: Refined TSC clocksource calibration: 2904.010 MHz           │    at /linux-kernel-module-cheat//out/x86_64/buildroot/build/
[    1.742796] clocksource: tsc: mask: 0xffffffffffffffff max_cycles: 0x29dc0f4s│kernel_modules-1.0/./timer.c:28
[    1.743648] clocksource: Switched to clocksource tsc                         │28      {
[    2.072945] input: ImExPS/2 Generic Explorer Mouse as /devices/platform/i8043│(gdb) bt
[    2.078641] EXT4-fs (vda): couldn't mount as ext3 due to feature incompatibis│#0  lkmc_timer_callback (data=0xffffffffc0002000 <mytimer>)
[    2.080350] EXT4-fs (vda): mounting ext2 file system using the ext4 subsystem│    at /linux-kernel-module-cheat//out/x86_64/buildroot/build/
[    2.088978] EXT4-fs (vda): mounted filesystem without journal. Opts: (null)  │kernel_modules-1.0/./timer.c:28
[    2.089872] VFS: Mounted root (ext2 filesystem) readonly on device 254:0.    │#1  0xffffffff810ab494 in call_timer_fn (timer=0xffffffffc0002000 <mytimer>,
[    2.097168] devtmpfs: mounted                                                │    fn=0xffffffffc0000000 <lkmc_timer_callback>) at kernel/time/timer.c:1326
[    2.126472] Freeing unused kernel memory: 1264K                              │#2  0xffffffff810ab71f in expire_timers (head=<optimized out>,
[    2.126706] Write protecting the kernel read-only data: 16384k               │    base=<optimized out>) at kernel/time/timer.c:1363
[    2.129388] Freeing unused kernel memory: 2024K                              │#3  __run_timers (base=<optimized out>) at kernel/time/timer.c:1666
[    2.139370] Freeing unused kernel memory: 1284K                              │#4  run_timer_softirq (h=<optimized out>) at kernel/time/timer.c:1692
[    2.246231] EXT4-fs (vda): warning: mounting unchecked fs, running e2fsck isd│#5  0xffffffff81a000cc in __do_softirq () at kernel/softirq.c:285
[    2.259574] EXT4-fs (vda): re-mounted. Opts: block_validity,barrier,user_xatr│#6  0xffffffff810577cc in invoke_softirq () at kernel/softirq.c:365
hello S98                                                                       │#7  irq_exit () at kernel/softirq.c:405
                                                                                │#8  0xffffffff818021ba in exiting_irq () at ./arch/x86/include/asm/apic.h:541
Apr 15 23:59:23 login[49]: root login on 'console'                              │#9  smp_apic_timer_interrupt (regs=<optimized out>)
hello /root/.profile                                                            │    at arch/x86/kernel/apic/apic.c:1052
# insmod /timer.ko                                                              │#10 0xffffffff8180190f in apic_timer_interrupt ()
[    6.791945] timer: loading out-of-tree module taints kernel.                 │    at arch/x86/entry/entry_64.S:857
# [    7.821621] 4294894248                                                     │#11 0xffffffff82003df8 in init_thread_union ()
[    8.851385] 4294894504                                                       │#12 0x0000000000000000 in ?? ()
                                                                                │(gdb)

2.2.2. How to hack stuff

Besides a seamless initial build, this project also aims to make it effortless to modify and rebuild several major components of the system, to serve as an awesome development setup.

2.2.2.1. Your first Linux kernel hack

Let’s hack up the Linux kernel entry point, which is an easy place to start.

Open the file:

vim submodules/linux/init/main.c

and find the start_kernel function, then add there a:

pr_info("I'VE HACKED THE LINUX KERNEL!!!");

Then rebuild the Linux kernel, quit QEMU and reboot the modified kernel:

./build-linux
./run

and, surely enough, your message has appeared at the beginning of the boot:

<6>[    0.000000] I'VE HACKED THE LINUX KERNEL!!!

So you are now officially a Linux kernel hacker, way to go!

We could have used just build to rebuild the kernel as in the initial build instead of build-linux, but building just the required individual components is preferred during development:

  • saves a few seconds from parsing Make scripts and reading timestamps

  • makes it easier to understand what is being done in more detail

  • allows passing more specific options to customize the build

The build script is just a lightweight wrapper that calls the smaller build scripts, and you can see what ./build does with:

./build --dry-run

When you reach difficulties, QEMU makes it possible to easily GDB step debug the Linux kernel source code, see: Section


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap