开源软件名称(OpenSource Name):sungwool/CFA_for_anomaly_localization
开源软件地址(OpenSource Url):https://github.com/sungwool/CFA_for_anomaly_localization
开源编程语言(OpenSource Language):
Python
100.0%
开源软件介绍(OpenSource Introduction):CFA for Target-Oriented Anomaly Localization
PyTorch implementation of CFA: Coupled-hypersphere-based Feature Adaptation for Target-Oriented Anomaly Localization (CFA).
Getting Started
Install packages with:
$ pip install -r requirements.txt
Dataset
Prepare industrial image as:
train data:
dataset_path/class_name/train/good/any_filename.png
[...]
test data:
dataset_path/class_name/test/good/any_filename.png
[...]
dataset_path/class_name/test/defect_type/any_filename.png
[...]
How to train
Example
python trainer_cfa.py --class_name all --data_path [/path/to/dataset/] --cnn wrn50_2 --size 224 --gamma_c 1 --gamma_d 1
Performance
WideResNet-50
R : resize.
C : crop
|
R+C |
R |
CFA++ |
bottle |
100 / 98.6 |
100 / 98.9 |
100 / 98.9 |
cable |
99.8 / 98.7 |
99.8 / 99.0 |
99.8 / 99.0 |
capsule |
97.3 / 98.9 |
99.2 / 99.1 |
99.2 / 99.1 |
carpet |
99.5 / 98.7 |
99.4 / 99.0 |
99.5 / 99.0 |
grid |
99.2 / 97.8 |
99.9 / 98.1 |
99.9 / 98.1 |
hazelnut |
100 / 98.6 |
100 / 98.9 |
100 / 98.9 |
leather |
100 / 99.1 |
100 / 99.3 |
100 / 99.3 |
metalnut |
100 / 98.8 |
100 / 99.1 |
100 / 99.1 |
pill |
97.9 / 98.6 |
97.9 / 98.8 |
97.9 / 98.8 |
screw |
97.3 / 99.0 |
93.5 / 98.8 |
97.3 / 99.0 |
tile |
99.4 / 95.8 |
100 / 96.3 |
100 / 96.3 |
toothbrush |
100 / 98.8 |
97.2 / 99.1 |
100 / 99.1 |
transistor |
100 / 98.3 |
100 / 98.4 |
100 / 98.4 |
wood |
99.7 / 94.8 |
99.2 / 95.0 |
99.7 / 95.0 |
zipper |
99.6 / 98.6 |
99.5 / 99.0 |
99.6 / 99.0 |
avg. |
99.3 / 98.2 |
99.0 / 98.5 |
99.5 / 98.5 |
Reference
[1] https://github.com/byungjae89/SPADE-pytorch
[2] https://github.com/xiahaifeng1995/PaDiM-Anomaly-Detection-Localization-master
[3] https://github.com/pytorch/vision/tree/main/torchvision/models
[4] https://github.com/lukasruff/Deep-SVDD-PyTorch
Citation
@article{lee2022cfa,
title={CFA: Coupled-hypersphere-based Feature Adaptation for Target-Oriented Anomaly Localization},
author={Lee, Sungwook and Lee, Seunghyun and Song, Byung Cheol},
journal={arXiv preprint arXiv:2206.04325},
year={2022}
}
|
请发表评论