• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

HansRen1024/SVM-classification-localization: HoG, PCA, PSO, Hard Negative Mining ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

HansRen1024/SVM-classification-localization

开源软件地址(OpenSource Url):

https://github.com/HansRen1024/SVM-classification-localization

开源编程语言(OpenSource Language):

Python 100.0%

开源软件介绍(OpenSource Introduction):

SVM-classification-detection (Python2.7)

HoG, PCA, PSO, Hard Negative Mining, Sliding Window, NMS

image

Best way to do detection is:

HoG(features) -> PCA(less features) + PSO(best C&gamma) -> origin SVM -> HNM(more features) -> better SVM -> SW -> NMS(bbox regression)

Sorry for my laziness.

I think I should clarify the steps for the program.

  1. Extract HoG features (script 1)

  2. Train an initial model for pso (script 2)

  3. Do pca and pso for better parameters C and gamma (script 6)

  4. Use no-pca features and the best parameters to train the second model (script 2)

  5. In order to increase the accuracy, use the second model to do hnm and get the final model(script 7)

  6. Finally, choose an algorithm you like to do location(script 8 or 9 or 10)

PS:

  1. The reason I use pca is to accelerate the speed of pso. To be honestly, pso is really slow.

  2. For step 4, you can also use features processed by pca, but I strongly advise you to hold as possible as more features. Because more features, higher accuracy.

中文地址:http://blog.csdn.net/renhanchi/article/category/7007663

强烈建议将6篇文章都仔细看一遍,再来跑代码,或者边看边跑。内容不是很多,但是会对你理解算法和代码有很大帮助。




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Karosieben/boblocale: localization for bobs mods发布时间:2022-08-15
下一篇:
Anahkiasen/polyglot: Laravel localization and translation helper发布时间:2022-08-15
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap