• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

alexandrebarachant/covariancetoolbox: Covariance toolbox for matlab, including r ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

alexandrebarachant/covariancetoolbox

开源软件地址(OpenSource Url):

https://github.com/alexandrebarachant/covariancetoolbox

开源编程语言(OpenSource Language):

MATLAB 99.5%

开源软件介绍(OpenSource Introduction):

This toolbox is no longer supported by its author. The code is working on the last 2015 Matlab version, but may not be compatible with future versions. Consider using pyRiemann as a (python) alternative.

Fee free to fork the toolbox and start your own support :)

Covariance Toolbox


This toolbox contain a set of matlab functions dedicated to covariance matrices estimation and manipulation. The key functions mainly focus on Riemanian geometry of SPD matrices, with distance, geodesic, tangent space and mean estimation of covariance matrices under different metrics.

This toolbox is licenced under GPLv3.

Installation

installer

List of functions

Generate SPD matrices

  • Generate a set of SPD matrices according to a wishart distribution : [COV, Sig] = generate_wishart_set(N,I,Df,Sig)

Distances

  • Distance between two covariance matrices (by default euclidean metric) : d = distance(C1,C2,metric)
  • Kullback-Leibler distance : d = distance_kullback(C1,C2)
  • Log-euclidean distance : d = distance_logeuclid(C1,C2)
  • Riemannian distance : d = distance_riemann(C1,C2)
  • Optimal transportation distance : d = distance_opttransp(C1,C2)
  • Log Determinant distance : d = distance_ld(C1,C2)

Estimation

  • SCM
  • Fixed point
  • Normalized SCM
  • MCD
  • Set of covariance matrices for a set of 3D signals X : Nchannels x Tsamples x Ntrials COV = covariances(X)

Geodesic

  • Geodesic between two covariance matrices (by default euclidean metric) : Ct = geodesic(C1,C2,t,metric)
  • Euclidean geodesic : Ct = euclidean_geodesic(C1,C2,t)
  • Log-euclidean geodesic : Ct = logeuclidean_geodesic(C1,C2,t)
  • Riemannian geodesic : Ct = riemann_geodesic(C1,C2,t)
  • Optimal transpotation geodesic : Ct = opttransp_geodesic(C1,C2,t)

Mean

  • Mean of a set of covariances matrices ( by default euclidean metric) : C = mean_covariances(COV,metric)
  • Riemannian mean : C = riemann_mean(COV)
  • Riemannian median : C = riemann_median(COV)
  • Riemannian trimmed mean (excluding outliers) : C = riemann_trimmed_mean(COV)
  • Log-euclidean mean : C = logeuclid_mean(COV)
  • Optimal transportation mean : C = opttransp_mean(COV)
  • Log Determinant mean : C = logdet_mean(COV)
  • Geodesic iterative mean : C = geodesic_mean(COV,metric)

Riemannian utils

  • Canonical logarithm of a covariance matrix : lC = logm(C)
  • Canonical exponential of a covariance matrix : eC = expm(C)
  • Riemannian logaritmic map : S = RiemannLogMap(C)
  • Riemannian exponential map : C = RiemannExpMap(S)
  • Tangent space mapping of a set of covariance matrices : T = Tangent_space(COV,C)
  • Manifold mapping of a set of tangent vectors : COV = UnTangent_space(T,C)
  • Tangent vector of a covariance matrix : t = tangent_vector(C1,C)
  • Geodesic filtering of a set of covariance matrices : COVf = geodesic_filter(COV,C,W)

Visualisation

  • plot the manifold of a set of 2x2 covariance matrices : manifold_plot(COV,label,boundary)

Classification

Multiclass

  • minimum distance to mean : Ytest = mdm(COVtest,COVtrain,Ytrain)
  • minimum distance to mean + geodesic filtering : Ytest = fgmdm(COVtest,COVtrain,Ytrain)
  • kmeans usupervised classification : Ytest = kmeanscov(COVtest,COVtrain,Nclass)
  • Tangent space logistic regression (soon) : Ytest = tsglm(COVtest,COVtrain,Ytrain)

binary classification only

  • Tangent space regularized LDA : Ytest = tslda(COVtest,COVtrain,Ytrain)
  • Tangent space SVM (soon) : Ytest = tssvm(COVtest,COVtrain,Ytrain)

Examples

Generate a set of covariance matrices and estimate the riemannian mean

% generate a wishart set of 10 5x5 covariances matrices with a degree of freedom equal to 11
COV = generate_wishart_set(5,10,11);

% estimate the Riemannian mean of this set.
C = mean_covariances(COV,'riemann')

C =

   14.4625    1.4332   -3.7638   -2.0052   14.2517
    1.4332   11.5863   -2.2292    7.7445    8.8240
   -3.7638   -2.2292   24.4896   -0.3460   -3.9808
   -2.0052    7.7445   -0.3460   12.1740    6.2503
   14.2517    8.8240   -3.9808    6.2503   37.4416

Generate a set of trials and estimate the riemannian mean

% generate a set of trials , 5 channels, 100 time sample and 1000 trials
X = randn(5,100,1000);

% covariance matrix of each trial
COV = covariances(X);

% Riemannian mean
C = mean_covariances(COV,'riemann')

C =

    0.9699    0.0012    0.0026    0.0050    0.0040
    0.0012    0.9659   -0.0037    0.0059    0.0001
    0.0026   -0.0037    0.9712   -0.0009   -0.0024
    0.0050    0.0059   -0.0009    0.9687   -0.0034
    0.0040    0.0001   -0.0024   -0.0034    0.9671

Classification

see example folder




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap