在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
开源软件名称(OpenSource Name):mastodon-sc/matlab-mastodon-importer开源软件地址(OpenSource Url):https://github.com/mastodon-sc/matlab-mastodon-importer开源编程语言(OpenSource Language):MATLAB 100.0%开源软件介绍(OpenSource Introduction):Table of Contents
A MATLAB importer for Mastodon files.This repository contains several MATLAB functions used to import Mastodon files (https://github.com/fiji/TrackMate3). The import procedure is based on directly deserialising the binary files using MATLAB low-level API, and therefore has no dependency. Running a quick demo.Run the demo script Installation.Simply add all the files of the Usage.The main function is [ G, metadata, tss ] = import_mastodon( source_file ); The data graph.The data is returned as a MATLAB directed graph already: >> G
G =
digraph with properties:
Edges: [2981×6 table]
Nodes: [3087×22 table] The spots are listed in the Everything is imported: the model, the numerical features and the tags: >> head(G.Nodes)
ans =
8×22 table
id x y z t c_11 c_12 c_13 c_22 c_23
__ ______ ______ ______ _ ______ ________ ____ ______ ____
0 61.362 76.349 55.142 0 22.502 0.91281 0 21.628 0
1 113.15 3.2331 67.34 0 35.087 6.6417 0 20.584 0
2 35.741 20.075 57.84 0 24.6 -6.5254 0 28.333 0
3 79.251 35.248 56.869 0 19.096 0.19479 0 34.124 0
4 143.31 95.934 77.957 0 31.404 -1.9327 0 18.281 0
5 114.93 97.665 65.717 0 25.358 -0.42869 0 18.027 0
6 129.54 98.146 70.754 0 23.942 -0.66575 0 18.076 0
7 36.41 50.149 57.431 0 26.004 7.9379 0 25.876 0
...
c_33 bsrs label Fruits Names SpotNLinks SpotTrackID
______ ______ _____ ___________ ___________ __________ ___________
181.48 725.93 '0' Apple Mike 1 0
82.768 331.07 '1' Apple <undefined> 1 105
146.87 587.46 '' Banana Robert 1 104
170.8 683.21 '' Kiwi Myriam 1 103
122.11 488.43 '' Kiwi Assaf 1 102
115.41 461.63 '' <undefined> <undefined> 1 101
86.567 346.27 '' <undefined> <undefined> 1 100
158 631.99 '' <undefined> <undefined> 1 99
...
The >> head(G.Edges)
ans =
8×6 table
EndNodes id Fruits Names LinkDisplacement LinkVelocity
________ __ ___________ ___________ ________________ ____________
1 95 0 <undefined> Chris 1.3555 1.3555
2 96 1 Apple Roy 0.41863 0.41863
3 97 2 Banana <undefined> 0.65284 0.65284
4 98 3 Kiwi <undefined> 0.95254 0.95254
5 99 4 <undefined> <undefined> 0.52254 0.52254
6 100 5 <undefined> <undefined> 0.77146 0.77146
7 101 6 <undefined> <undefined> 0.83214 0.83214
8 102 7 <undefined> Joe 0.71399 0.71399 The tables store also the physical units of the variables they store: >> head(G.Edges, 1)
ans =
1×6 table
EndNodes id Fruits Names LinkDisplacement LinkVelocity
________ __ ___________ _____ ________________ ____________
1 95 0 <undefined> Chris 1.3555 1.3555
>> G.Edges.Properties.VariableUnits
ans =
1×6 cell array
{0×0 char} {0×0 char} {0×0 char} {0×0 char} {'um'} {'um/frame'} And their description when available: >> G.Edges.Properties.VariableDescriptions'
ans =
6×1 cell array
{0×0 char}
{0×0 char}
{0×0 char}
{0×0 char}
{'Computes the link displacement in physical units as the distance between the source spot and the target spot.' }
{'Computes the link velocity as the distance between the source and target spots divided by their frame difference. Units are in physical distance per frame.'}
The ellipsoid and the covariance matrix.The spot ellipsoid shape is represented through a covariance matrix. The covariance matrix itself is stored in the variables C = [ c_11, c_12, c_13
c_12, c_22, c_23
c_13, c_23, c_33 ]; The In the spots = G.Nodes;
i = 1;
spot = spots( i, : );
M = [ spot.x; spot.y; spot.z ];
C = [
spot.c_11, spot.c_12, spot.c_13
spot.c_12, spot.c_22, spot.c_23
spot.c_13, spot.c_23, spot.c_33
];
h(i) = plot_ellipsoid( M, C );
set( h(i), ...
'EdgeColor', 'None', ...
'FaceColor', 'b', ...
'FaceLighting', 'Flat' );
light() The metadata.We also retrieve the metadata, made mainly of the physical units, and the absolute path to the XML/H5 BDV file: >> metadata
metadata =
struct with fields:
version: '0.3'
spim_data_file_path: '/Users/tinevez/Development/Mastodon/TrackMate3/samples/mamutproject/datasethdf5.xml'
spim_data_file_path_type: 'absolute'
space_units: 'um'
time_units: 'frame' The tag-set structure.The last variable returned is the tag-set structure. For each tag-set, it contains its label, its id and the tag list. >> tss
tss =
2×1 struct array with fields:
id
name
tags
>> tss(1)
ans =
struct with fields:
id: 0
name: 'Fruits'
tags: [3×1 struct] The tags themselves are a >> tss(1).tags(1)
ans =
struct with fields:
label: 'Apple'
id: 0
color: -52480 In the function rgb = to_hex_color( val )
hex_code = dec2hex( typecast( int32( val ), 'uint32' ) );
rgb = reshape( sscanf( hex_code( 1 : 6 ).', '%2x' ), 3, []).' / 255;
end
>> val = tss(1).tags(1).color;
>> rgb = to_hex_color( val )l
>> rgb
rgb =
1.0000 1.0000 0.2000 Performance.On my MacPro I tested the import of a dataset made of about 30k objects (spots and links) in less than 1s. Limitation.The importer strongly depends on how the Mastodon file format is written. Any changes made to the serialisation procedure in the Java Mastodon project will likely break the importer. Right now the importer echoes a warning if the Mastodon file version is not 0.3. Examples.The screenshots below mostly exemplify what can be done from the imported data structure, with the MATLAB visualisation tools. Import the full track graph and the spot ellipsoids.Import the tags and use them to color spots and links.The MaMuT dataset imported as ellipsoids.This is the results of the detection of cells using the TGMM framework of Amat et al., 2014. Colouring individual tracks.A smaller dataset.Inspecting the data numerical features.figure;
s = scatter( G.Nodes.SpotGaussianFilteredIntensityMeanCh1, G.Nodes.z, 75, sqrt(G.Nodes.bsrs), 'filled' );
s.MarkerEdgeColor = [ 0.3 0.3 0.3 ];
xlabel( 'Mean intensity' );
ylabel( sprintf( 'Z position (%s)', G.Nodes.Properties.VariableUnits{4} ) )
colormap jet
c = colorbar;
c.Label.String = sprintf( 'Approx size (%s)', G.Nodes.Properties.VariableUnits{4} ); |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论