开源软件名称(OpenSource Name):ashishpatel26/Last-Minute-Notes-of-Machine-learning-and-Deep-learning
开源软件地址(OpenSource Url):https://github.com/ashishpatel26/Last-Minute-Notes-of-Machine-learning-and-Deep-learning
开源编程语言(OpenSource Language):
开源软件介绍(OpenSource Introduction):Last Minute Notes of Machine learning and Deep learning By Jason Brownlee
All Article Source : https://machinelearningmastery.com
-
Mini Course of Machine learning
-
Crash Course in Python for Machine Learning Developers
-
Statistics for Machine Learning
-
Linear Algebra for Machine Learning
-
How to Think About Machine Learning
-
How to Get Better Deep Learning Results
-
Python Machine Learning Mini-Course
-
Crash Course in Recurrent Neural Networks for Deep Learning
-
Crash Course in Convolutional Neural Networks for Machine Learning
-
Crash Course On Multi-Layer Perceptron Neural Networks
-
Super Fast Crash Course in R (for developers)
-
How to Get Started With Deep Learning for Computer Vision
-
How to Get Started with Deep Learning for Time Series Forecasting (7-Day Mini-Course)
-
How to Get Started with Deep Learning for Natural Language Processing (7-Day Mini-Course)
-
Mini-Course on Long Short-Term Memory Recurrent Neural Networks with Keras
-
Applied Deep Learning in Python Mini-Course
-
CNN Long Short-Term Memory Networks
-
Common Pitfalls In Machine Learning Projects
-
Practical Deep Learning for Coders (Review)
Large Scale Machine Learning Courses (OR) Machine learning Courses for Large Dataset
- Large Scale Learning (EECS6898,Columbia, 2010): http://www.sanjivk.com/EECS6898/lectures.html
- Large Scale Learning (CMSC 3590, U of Chicago, 2009): http://ttic.uchicago.edu/~gregory/courses/LargeScaleLearning/
- Models of Computation for Massive Data (CS7960, U of Utah, 2010) : http://www.cs.utah.edu/~jeffp/teaching/cs7960.html
- Parallel Distributed Processing (85-419, CMU, 2010): http://www.cnbc.cmu.edu/~plaut/IntroPDP/index.html
- Machine Learning ( COMS4771, Columbia, 2008): http://hunch.net/~coms-4771/lectures.html
- Machine Learning (CS4780, Cornell, 2009): http://www.cs.cornell.edu/Courses/cs4780/2009fa/
- Machine Learning (10-701, CMU, 2011): http://www.cs.cmu.edu/~awm/10701/
- Machine Learning (CS590, Purdue, 2010): http://www.stat.purdue.edu/~vishy/introml/introml.html
- Advanced Machine Learning (CS253, Caltech, 2010): http://www.cs.caltech.edu/courses/cs253
- Advanced Machine Learning (COMS6772, Columbia, 2010): http://www.cs.columbia.edu/~jebara/6772/solutions.html
- Advanced Machine Learning (CS6784, Cornell, 2010): http://www.cs.cornell.edu/Courses/cs6784/2010sp/
- Advanced Machine Learning (CSC2535, U of Toronto, 2010): http://www.cs.toronto.edu/~hinton/csc2535/lectures.html
- Statistical Learning Theory (9.520, MIT, 2011): http://www.mit.edu/~9.520/
- Computational Learning Theory (Comp 150AML, Tufts, 2008): http://www.cs.tufts.edu/~roni/Teaching/CLT/
- Large-Scale Simultaneous Inference (Stats 329, Stanford, 2010): http://www-stat.stanford.edu/~omkar/329/
- Inference, Estimation and Information Processing (EE378, Stanford, 2011): http://www.stanford.edu/class/ee378/reading.html
- Statistical Signal Processing B (EE378B, Stanford, 2011): http://www.stanford.edu/class/ee378B/refs.html
- Statistical Machine Learning (Domke, RIT, 2011): http://people.rit.edu/jcdicsa/courses/SML/
- Unsupervised Learning (CSE291, UCSD, 2011): http://cseweb.ucsd.edu/classes/sp11/cse291-d/#syllabus
- Adaptive Neural Networks (EE373B, Stanford, 2009): http://www.stanford.edu/class/ee373b/
- Optimization (10725, CMU, 2010): http://select.cs.cmu.edu/class/10725-S10/schedule.html
- Convex Optimization I (EE364A, Stanford, 2011): http://www.stanford.edu/class/ee364a/
- Convex Optimization II (EE364B, Stanford, 2011): http://www.stanford.edu/class/ee364b
- Dealing with Massive Data (COMS6998,Columbia, 2010): http://www.cs.columbia.edu/~coms699812/
- Algorithms for Massive Data Sets (CS369, Stanford, 2009):http://www.stanford.edu/class/cs369m/
- Algorithms for Massive Data Sets (CS493, Princeton, 2002): http://www.cs.princeton.edu/courses/archive/spring02/cs493/schedule.html
- Algorithms for Massive Data Sets (Gørtz, Witt & Bille, DTU, 2011): https://massivedatasets.wordpress.com/
- Data Mining: Learning from Large Data Sets (Krause, ETH, 2011): http://las.ethz.ch/courses/datamining-s11/
- From Languages to Information (CS124, Stanford, 2011):http://www.stanford.edu/class/cs124/
- Data-Intensive Information Processing Applications (Lin, UMD, 2010): http://www.umiacs.umd.edu/~jimmylin/cloud-2010-Spring/syllabus.html
- Advanced Algorithm Design (CS521, Princeton, 2006): http://www.cs.princeton.edu/courses/archive/fall06/cos521/
- Approximation algorithms (CS598, UIUC, 2011): http://www.cs.illinois.edu/class/sp11/cs598csc/
- Data Stream Algorithms (Muthukrishnan, 2009): http://www.cs.mcgill.ca/~denis/notes09.pdf
- Information Theory (EE376, Stanford, 2011): http://classx.stanford.edu/View/Subject.php?SubjectID=2011_Q1_EE376_Lec
- Lectures on Statistical Modeling Theory (Rissanen): http://www.mdl-research.org/pub/lectures.pdf
- Multimedia Databases and Data Mining (15-826, CMU, 2010): http://www.cs.cmu.edu/~christos/courses/826.S10/schedule.html
- Distributed Systems (CS525, UIUC, 2011): http://www.cs.uiuc.edu/class/sp11/cs525/sched.htm
- Distributed Systems (6.824, MIT, 2011): http://pdos.csail.mit.edu/6.824/schedule.html
- Distributed Systems Courses: http://the-paper-trail.org/blog/?page_id=152
- Parallel Computing Courses: http://www.cs.rit.edu/~ncs/parallel.html#courses
- Applications of Parallel computers (CS267, U.C. Berkeley, 2011): http://www.cs.berkeley.edu/~demmel/cs267_Spr11/
- Programming Massively Parallel Processors with CUDA (CS193G, Stanford) : http://itunes.apple.com/itunes-u/programming-massively-parallel/id384233322#ls=1
- Parallel Algorithms (15-499, CMU, 2009): http://www.cs.cmu.edu/afs/cs/academic/class/15499-s09/www/
- Advanced Methods in Matrix Computations: Iterative Methods (CS 336, Stanford, 2006): http://www.stanford.edu/class/cme324/
- Parallel Numerical Algorithms (CS 554, UIUC, 2008): http://www.cse.illinois.edu/courses/cs554/notes/index.html
- Scientific Computing for Engineers (CS 594, UTK, 2011): http://web.eecs.utk.edu/~dongarra/WEB-PAGES/cs594-2008.htm
- Algorithms in the "Real World" (15-853, CMU, 2010): http://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/
- Sublinear Algorithms (6.896, MIT, 2010): http://stellar.mit.edu/S/course/6/fa10/6.896/materials.html
- Large-Scale Simultaneous Inference (Stats 329, Stanford, 2010): http://www-stat.stanford.edu/~omkar/329/
- Communication-Avoiding Algorithms (CS294, Berkeley, 2011): http://www.cs.berkeley.edu/~odedsc/CS294/
- Modeling Data with Uncertainty (Seminar, U of Utah, 2010): http://www.cs.utah.edu/~suresh/mediawiki/index.php/Algorithms_Seminar/Fall10#Schedule
|
请发表评论