在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
开源软件名称(OpenSource Name):Lightning-AI/metrics开源软件地址(OpenSource Url):https://github.com/Lightning-AI/metrics开源编程语言(OpenSource Language):Python 99.8%开源软件介绍(OpenSource Introduction):Machine learning metrics for distributed, scalable PyTorch applications. What is Torchmetrics • Implementing a metric • Built-in metrics • Docs • Community • License InstallationSimple installation from PyPI pip install torchmetrics Other installationsInstall using conda conda install -c conda-forge torchmetrics Pip from source # with git
pip install git+https://github.com/Lightning-AI/metrics.git@release/latest Pip from archive pip install https://github.com/Lightning-AI/metrics/archive/refs/heads/release/latest.zip Extra dependencies for specialized metrics: pip install torchmetrics[audio]
pip install torchmetrics[image]
pip install torchmetrics[text]
pip install torchmetrics[all] # install all of the above Install latest developer version pip install https://github.com/Lightning-AI/metrics/archive/master.zip What is TorchMetricsTorchMetrics is a collection of 80+ PyTorch metrics implementations and an easy-to-use API to create custom metrics. It offers:
You can use TorchMetrics with any PyTorch model or with PyTorch Lightning to enjoy additional features such as:
Using TorchMetricsModule metricsThe module-based metrics contain internal metric states (similar to the parameters of the PyTorch module) that automate accumulation and synchronization across devices!
This can be run on CPU, single GPU or multi-GPUs! For the single GPU/CPU case: import torch
# import our library
import torchmetrics
# initialize metric
metric = torchmetrics.Accuracy()
# move the metric to device you want computations to take place
device = "cuda" if torch.cuda.is_available() else "cpu"
metric.to(device)
n_batches = 10
for i in range(n_batches):
# simulate a classification problem
preds = torch.randn(10, 5).softmax(dim=-1).to(device)
target = torch.randint(5, (10,)).to(device)
# metric on current batch
acc = metric(preds, target)
print(f"Accuracy on batch {i}: {acc}")
# metric on all batches using custom accumulation
acc = metric.compute()
print(f"Accuracy on all data: {acc}") Module metric usage remains the same when using multiple GPUs or multiple nodes. Example using DDPimport os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch import nn
from torch.nn.parallel import DistributedDataParallel as DDP
import torchmetrics
def metric_ddp(rank, world_size):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12355"
# create default process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
# initialize model
metric = torchmetrics.Accuracy()
# define a model and append your metric to it
# this allows metric states to be placed on correct accelerators when
# .to(device) is called on the model
model = nn.Linear(10, 10)
model.metric = metric
model = model.to(rank)
# initialize DDP
model = DDP(model, device_ids=[rank])
n_epochs = 5
# this shows iteration over multiple training epochs
for n in range(n_epochs):
# this will be replaced by a DataLoader with a DistributedSampler
n_batches = 10
for i in range(n_batches):
# simulate a classification problem
preds = torch.randn(10, 5).softmax(dim=-1)
target = torch.randint(5, (10,))
# metric on current batch
acc = metric(preds, target)
if rank == 0: # print only for rank 0
print(f"Accuracy on batch {i}: {acc}")
# metric on all batches and all accelerators using custom accumulation
# accuracy is same across both accelerators
acc = metric.compute()
print(f"Accuracy on all data: {acc}, accelerator rank: {rank}")
# Reseting internal state such that metric ready for new data
metric.reset()
# cleanup
dist.destroy_process_group()
if __name__ == "__main__":
world_size = 2 # number of gpus to parallelize over
mp.spawn(metric_ddp, args=(world_size,), nprocs=world_size, join=True) Implementing your own Module metricImplementing your own metric is as easy as subclassing an import torch
from torchmetrics import Metric
class MyAccuracy(Metric):
def __init__(self):
super().__init__()
# call `self.add_state`for every internal state that is needed for the metrics computations
# dist_reduce_fx indicates the function that should be used to reduce
# state from multiple processes
self.add_state("correct", default=torch.tensor(0), dist_reduce_fx="sum")
self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")
def update(self, preds: torch.Tensor, target: torch.Tensor):
# update metric states
preds, target = self._input_format(preds, target)
assert preds.shape == target.shape
self.correct += torch.sum(preds == target)
self.total += target.numel()
def compute(self):
# compute final result
return self.correct.float() / self.total Functional metricsSimilar to import torch
# import our library
import torchmetrics
# simulate a classification problem
preds = torch.randn(10, 5).softmax(dim=-1)
target = torch.randint(5, (10,))
acc = torchmetrics.functional.accuracy(preds, target) Covered domains and example metricsWe currently have implemented metrics within the following domains:
In total TorchMetrics contains 80+ metrics! Contribute!The lightning + TorchMetrics team is hard at work adding even more metrics. But we're looking for incredible contributors like you to submit new metrics and improve existing ones! Join our Slack to get help become a contributor! CommunityFor help or questions, join our huge community on Slack! CitationWe’re excited to continue the strong legacy of open source software and have been inspired over the years by Caffe, Theano, Keras, PyTorch, torchbearer, ignite, sklearn and fast.ai. If you want to cite this framework feel free to use GitHub's built-in citation option to generate a bibtex or APA-Style citation based on this file (but only if you loved it |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论