Maintained by members in SJTU-Thinklab: Chang Liu, Runzhong Wang, Jiayi Zhang, Zelin Zhao, Haoyu Geng, Tianzhe Wang, Wenxuan Guo, Wenjie Wu and Junchi Yan. We also thank all contributers from the community!
We are looking for post-docs interested in machine learning especially for learning combinatorial solvers, dynamic graphs, and reinforcement learning. Please send your up-to-date resume via yanjunchi AT sjtu.edu.cn.
Neural Networks for Combinatorial Optimization: A Review of More Than a Decade of Research INFORMS Journal on Computing, 1999. journal
Smith, Kate A.
Model-Based Search for Combinatorial Optimization: A Critical Survey. Annals of Operations Research, 2004. journal
Zlochin, Mark and Birattari, Mauro and Meuleau, Nicolas and Dorigo, Marco.
A Survey of Reinforcement Learning and Agent-Based Approaches to Combinatorial Optimization. Citeseer, 2012. journal
Miagkikh, Victor
Machine Learning Approaches to Learning Heuristics for Combinatorial Optimization Problems. Procedia Manufacturing, 2018. journal
Mirshekarian, Sadegh and Sormaz, Dusan.
Boosting combinatorial problem modeling with machine learning. IJCAI, 2018. paper
Lombardi, Michele and Milano, Michela.
A Review of combinatorial optimization with graph neural networks. BigDIA, 2019. paper
Huang, Tingfei and Ma, Yang and Zhou, Yuzhen and Huang, Honglan Huang and Chen, Dongmei and Gong, Zidan and Liu, Yao.
Machine Learning for Combinatorial Optimization: a Methodological Tour d'horizon. EJOR, 2020. journal
Bengio, Yoshua and Lodi, Andrea and Prouvost, Antoine.
Reinforcement Learning for Combinatorial Optimization: A Survey. Arxiv, 2020. paper
Mazyavkina, Nina and Sviridov, Sergey and Ivanov, Sergei and Burnaev, Evgeny.
✨Learning Graph Matching and Related Combinatorial Optimization Problems. IJCAI, 2020. paper
Yan, Junchi and Yang, Shuang, and Hancock, Edwin R.
Learning Combinatorial Optimization on Graphs: A Survey with Applications to Networking. IEEE ACCESS, 2020. journal
Vesselinova, Natalia and Steinert, Rebecca and Perez-Ramirez, Daniel F. and Boman, Magnus.
From Shallow to Deep Interactions Between Knowledge Representation, Reasoning and Machine Learning. Arxiv, 2020. paper
Bouraoui, Zied and Cornuéjols, Antoine and Denœux, Thierry and Destercke, Sébastien and Dubois, Didier and Guillaume, Romain and Marques-Silva, João and Mengin, Jérôme and Prade, Henri and Schockaert, Steven and Serrurier, Mathieu and Vrain, Christel.
A Survey on Reinforcement Learning for Combinatorial Optimization. Arxiv, 2020. paper
Yang, Yunhao and Whinston, Andrew.
Research Reviews of Combinatorial Optimization Methods Based on Deep Reinforcement Learning. (in chinese) 自动化学报, 2020. journal
Li, Kai-Wen and Zhang, Tao and Wang, Rui and Qin, Wei-Jian and He, Hui-Hui and Huang, Hong.
Graph Learning for Combinatorial Optimization: A Survey of State-of-the-Art. Data Science and Engineering, 2021. journal
Peng, Yue, Choi, Byron, and Xu, Jianliang.
Combinatorial Optimization and Reasoning with Graph Neural Networks Arxiv, 2021. paper
Cappart, Quentin and Chetelat, Didier and Khalil, Elias and Lodi, Andrea and Morris, Christopher and Velickovic, Petar
Machine Learning for Electronic Design Automation (EDA) : A Survey TODAES, 2021. journal
Huang, Guyue and Hu, Jingbo and He, Yifan and Liu, Jialong and Ma, Mingyuan and Shen, Zhaoyang and Wu, Juejian and Xu, Yuanfan and Zhang, Hengrui and Zhong, Kai and others
Fey, Matthias and Lenssen, Jan E. and Morris, Christopher and Masci, Jonathan and Kriege, Nils M.
✨Graduated Assignment for Joint Multi-Graph Matching and Clustering with Application to Unsupervised Graph Matching Network Learning. NeurIPS, 2020. paper, code
Wang, Runzhong and Yan, Junchi and Yang, Xiaokang
✨Combinatorial Learning of Robust Deep Graph Matching: An Embedding Based Approach. TPAMI, 2020. paper, code
Wang, Runzhong and Yan, Junchi and Yang, Xiaokang
Deep Graph Matching via Blackbox Differentiation of Combinatorial Solvers. ECCV, 2020. paper, code
Rolinek, Michal and Swoboda, Paul and Zietlow, Dominik and Paulus, Anselm and Musil, Vit and Martius, Georg
✨Revocable Deep Reinforcement Learning with Affinity Regularization for Outlier-Robust Graph Matching. Arxiv, 2020. paper
Liu, Chang and Jiang, Zetian and Wang, Runzhong and Yan, Junchi and Huang, Lingxiao and Lu, Pinyan
✨Neural Graph Matching Network: Learning Lawler's Quadratic Assignment Problem with Extension to Hypergraph and Multiple-graph Matching. TPAMI, 2021. paper, code
Revised Note on Learning Algorithms for Quadratic Assignment with Graph Neural Networks Arxiv, 2017. paper, code
Nowak, Alex and Villar, Soledad and Bandeira, S. Afonso and Bruna, Joan
✨Revocable Deep Reinforcement Learning with Affinity Regularization for Outlier-Robust Graph Matching. Arxiv, 2020. paper
Liu, Chang and Jiang, Zetian and Wang, Runzhong and Yan, Junchi and Huang, Lingxiao and Lu, Pinyan
✨Neural Graph Matching Network: Learning Lawler's Quadratic Assignment Problem with Extension to Hypergraph and Multiple-graph Matching. TPAMI, 2021. paper, code
Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau and Thomas Laurent
The First AI4TSP Competition: Learning to Solve Stochastic Routing Problems Arxiv, 2022. paper, code
Bliek, Laurens and da Costa, Paulo and Afshar, Reza Refaei and Zhang, Yingqian and Catshoek, Tom and Vos, Daniel and Verwer, Sicco and Schmitt-Ulms, Fynn and Hottung, Andre and Shah, Tapan and others
Graph Neural Network Guided Local Search for the Traveling Salesperson Problem ICLR, 2022. paper
Hudson, Benjamin and Li, Qingbiao and Malencia, Matthew and Prorok, Amanda
Preference Conditioned Neural Multi-objective Combinatorial Optimization ICLR, 2022. paper
Lin, Xi and Yang, Zhiyuan and Zhang, Qingfu
Generalization of Neural Combinatorial Solvers Through the Lens of Adversarial Robustness ICLR, 2022. paper
Simon Geisler, Johanna Sommer, Jan Schuchardt, Aleksandar Bojchevski and Stephan Günnemann
Learning to Perform Local Rewriting for Combinatorial Optimization. NeurIPS, 2019. paper, code
Chen, Xinyun and Tian, Yuandong.
Deep Reinforcement Learning for the Electric Vehicle Routing Problem with Time Windows. Arxiv, 2020. paper
Lin, Bo and Ghaddar, Bissan and Nathwani, Jatin.
Efficiently Solving the Practical,Vehicle Routing Problem: A Novel Joint Learning Approach. KDD, 2020. paper
Lu Duan, Yang Zhan, Haoyuan Hu, Yu Gong, Jiangwen Wei, Xiaodong Zhang, Yinghui Xu
Reinforcement Learning with Combinatorial Actions: An Application to Vehicle Routing NeurIPS, 2020. paper, code
Arthur Delarue, Ross Anderson, Christian Tjandraatmadja
A Learning-based Iterative Method for Solving Vehicle Routing Problems ICLR, 2020. paper
Lu, Hao and Zhang, Xingwen and Yang, Shuang
Neural Large Neighborhood Search for the Capacitated Vehicle Routing Problem Arxiv, 2020. paper
Hottung, Andre and Tierney, Kevin
Learning Improvement Heuristics for Solving Routing Problems TNNLS, 2021. journal
Wu, Yaoxin and Song, Wen and Cao, Zhiguang and Zhang, Jie and Lim, Andrew
Reinforcement Learning for Route Optimization with Robustness Guarantees IJCAI, 2021. paper
Jacobs, Tobias and Alesiani, Francesco and Ermis, Gulcin
Multi-Decoder Attention Model with Embedding Glimpse for Solving Vehicle Routing Problems. AAAI, 2021. paper, code
Liang Xin, Wen Song, Zhiguang Cao, Jie Zhang
Analytics and Machine Learning in Vehicle Routing Research Arxiv, 2021. paper
Bai, Ruibin and Chen, Xinan and Chen, Zhi-Long and Cui, Tianxiang and Gong, Shuhui and He, Wentao and Jiang, Xiaoping and Jin, Huan and Jin, Jiahuan and Kendall, Graham and others
RP-DQN: An application of Q-Learning to Vehicle Routing Problems Arxiv, 2021. paper
Bdeir, Ahmad and Boeder, Simon and Dernedde, Tim and Tkachuk, Kirill and Falkner, Jonas K and Schmidt-Thieme, Lars
Deep Policy Dynamic Programming for Vehicle Routing Problems Arxiv, 2021. paper
Kool, Wouter and van Hoof, Herke and Gromicho, Joaquim and Welling, Max
Learning to Delegate for Large-scale Vehicle Routing NeurIPS, 2021. paper
Li, Sirui and Yan, Zhongxia and Wu, Cathy
Learning a Latent Search Space for Routing Problems using Variational Autoencoders ICLR, 2021. paper
Hottung, Andre and Bhandari, Bhanu and Tierney, Kevin
Preference Conditioned Neural Multi-objective Combinatorial Optimization ICLR, 2022. paper
Multi-Agent Reinforcement Learning for Job Shop Scheduling in Flexible Manufacturing Systems International Conference on Artificial Intelligence for Industries (AI4I), 2019. paper
Schirin Baer, Jupiter Bakakeu, Richard Meyes, Tobias Meisen
Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning. NeurIPS, 2020. paper, code
Zhang, Cong and Song, Wen and Cao, Zhiguang and Zhang, Jie and Tan, Puay Siew and Xu, Chi.
ScheduleNet: Learn to Solve Multi-agent Scheduling Problems with Reinforcement Learning Arxiv, 2021. paper
Junyoung Park, Sanjar Bakhtiyar, Jinkyoo Park
Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning Computer Networks, 2021. journal
Learning to schedule job-shop problems: Representation and policy learning using graph neural network and reinforcement learning. International Journal of Production Research, 2021. journal
Junyoung Park, Jaehyeong Chun, Sang Hun Kim, Youngkook Kim, Jinkyoo Park
Explainable reinforcement learning in production control of job shop manufacturing system. International Journal of Production Research, 2021. journal
Andreas Kuhnle,Marvin Carl May,Louis Sch?fer & Gisela Lanza
Resource Management with Deep Reinforcement Learning. HotNets, 2016. paper
Mao, Hongzi and Alizadeh, Mohammad and Menache, Ishai and Kandula, Srikanth.
Learning to Perform Local Rewriting for Combinatorial Optimization. NeurIPS, 2019. paper, code
Chen, Xinyun and Tian, Yuandong.
Learning Scheduling Algorithms for Data Processing Clusters SIGCOMM, 2019. paper, code
Mao, Hongzi and Schwarzkopf, Malte and Venkatakrishnan, Bojja Shaileshh and Meng, Zili and Alizadeh, Mohammad.
Smart Resource Allocation for Mobile Edge Computing: A Deep Reinforcement Learning Approach IEEE Transactions on Emerging Topics in Computing, 2019. Paper
Jiadai; Lei Zhao; Jiajia Liu; Nei Kato
A Two-stage Framework and Reinforcement Learning-based Optimization Algorithms for Complex Scheduling Problems Arxiv, 2021. paper
He, Yongming and Wu, Guohua and Chen, Yingwu and Pedrycz, Witold
✨A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs NeurIPS, 2021. paper, code
Wang, Runzhong and Hua, Zhigang and Liu, Gan and Zhang, Jiayi and Yan, Junchi and Qi, Feng and Yang, Shuang and Zhou, Jun and Yang, Xiaokang
Small Boxes Big Data: A Deep Learning Approach to Optimize Variable Sized Bin Packing BigDataService, 2017. paper
Mao, Feng and Blanco, Edgar and Fu, Mingang and Jain, Rohit and Gupta, Anurag and Mancel, Sebastien and Yuan, Rong and Guo, Stephen and Kumar, Sai and Tian, Yayang
Solving a New 3D Bin Packing Problem with Deep Reinforcement Learning Method Arxiv, 2017. paper
Hu, Haoyuan and Zhang, Xiaodong and Yan, Xiaowei and Wang, Longfei and Xu, Yinghui
Ranked Reward: Enabling Self-Play Reinforcement Learning for Combinatorial Optimization Alexandre Arxiv, 2018. paper
Laterre, Alexandre and Fu, Yunguan and Jabri, Mohamed Khalil and Cohen, Alain-Sam and Kas, David and Hajjar, Karl and Dahl, Torbjorn S and Kerkeni, Amine and Beguir, Karim
A Multi-task Selected Learning Approach for Solving 3D Bin Packing Problem. AAMAS, 2019. paper
Duan, Lu and Hu, Haoyuan and Qian, Yu and Gong, Yu and Zhang, Xiaodong and Xu, Yinghui and Wei, Jiangwen.
A Data-Driven Approach for Multi-level Packing Problems in Manufacturing Industry KDD, 2019. paper
Chen, Lei and Tong, Xialiang and Yuan, Mingxuan and Zeng, Jia and Chen, Lei
Solving Packing Problems by Conditional Query Learning OpenReview, 2019. paper
Li, Dongda and Ren, Changwei and Gu, Zhaoquan and Wang, Yuexuan and Lau, Francis
RePack: Dense Object Packing Using Deep CNN with Reinforcement Learning CACS, 2019. paper
Chu, Yu-Cheng and Lin, Horng-Horng
Reinforcement learning driven heuristic optimization Arxiv, 2019. paper
Cai, Qingpeng and Hang, Will and Mirhoseini, Azalia and Tucker, George and Wang, Jingtao and Wei, Wei
A Generalized Reinforcement Learning Algorithm for Online 3D Bin-Packing. AAAI Workshop, 2020. paper
Verma, Richa and Singhal, Aniruddha and Khadilkar, Harshad and Basumatary, Ansuma and Nayak, Siddharth and Singh, Harsh Vardhan and Kumar, Swagat and Sinha, Rajesh.
Robot Packing with Known Items and Nondeterministic Arrival Order. TASAE, 2020. paper
Wang, Fan and Hauser, Kris.
TAP-Net: Transport-and-Pack using Reinforcement Learning. TOG, 2020. paper, code
Hu, Ruizhen and Xu, Juzhan and Chen, Bin and Gong, Minglun and Zhang, Hao and Huang, Hui.
Simultaneous Planning for Item Picking and Placing by Deep Reinforcement Learning IROS, 2020. paper
Tanaka, Tatsuya and Kaneko, Toshimitsu and Sekine, Masahiro and Tangkaratt, Voot and Sugiyama, Masashi
Monte Carlo Tree Search on Perfect Rectangle Packing Problem Instances GECCO, 2020. paper
Pejic, Igor and van den Berg, Daan
PackIt: A Virtual Environment for Geometric Planning ICML, 2020. paper, code
Goyal, Ankit and Deng, Jia
Online 3D Bin Packing with Constrained Deep Reinforcement Learning. AAAI, 2021. paper, code
Zhao, Hang and She, Qijin and Zhu, Chenyang and Yang, Yin and Xu, Kai.
Learning Practically Feasible Policies for Online 3D Bin Packing Arxiv, 2021. paper
Hang Zhao and Chenyang Zhu and Xin Xu and Hui Huang and Kai Xu
Attend2Pack: Bin Packing through Deep Reinforcement Learning with Attention ICML Workshop, 2021. paper
Jingwei Zhang and Bin Zi and Xiaoyu Ge
Solving 3D bin packing problem via multimodal deep reinforcement learning AAMAS, 2021. paper
Jiang, Yuan, Zhiguang Cao, and Jie Zhang
Learning to Solve 3-D Bin Packing Problem via Deep Reinforcement Learning and Constraint Programming IEEE transactions on cybernetics, 2021. paper
Jiang, Yuan and Cao, Zhiguang and Zhang, Jie
Learning to Pack: A Data-Driven Tree Search Algorithm for Large-Scale 3D Bin Packing Problem CIKM, 2021. paper
Zhu, Qianwen and Li, Xihan and Zhang, Zihan and Luo, Zhixing and Tong, Xialiang and Yuan, Mingxuan and Zeng, Jia
Learning Efficient Online 3D Bin Packing on Packing Configuration Trees. ICLR, 2022. paper
请发表评论