开源软件名称(OpenSource Name):mim-uw/MachineLearningSeminar
开源软件地址(OpenSource Url):https://github.com/mim-uw/MachineLearningSeminar
开源编程语言(OpenSource Language):
开源软件介绍(OpenSource Introduction):Machine Learning
Seminarium magisterskie MIMUW
USOS
Link do spotkań: https://meet.google.com/uum-atjz-fvh (zmiana linku)
Plan spotkań 2021/2022
Plan spotkań 2020/2021
- 2020-10-15;
- 2020-10-22;
- 2020-11-05; Jacek Cyranka (tematy prac mgr.), Wojciech Jablonski, Neural Architecture Search for Segmentation (na podstawie DARTS, Auto-DeepLab, DCNAS), Zuzanna Kwiatkowska, Deep Learning Based Open Set Acoustic Scene Classification
- 2020-11-19; Zuzanna Opala(Training a Cooperative Team in Google Football Environment Using Multi-Agent Reinforcement Learning), Maciej Sypetkowski (Latent space editing in GANs & PGGAN, StyleGAN paper scraps)
- 2020-12-03; Jakub Modrzewski(COVID-19 AI Diagnosis using only Cough Recordings. Presentation, Article), Marta Mysiurska Multi-objective counterfactual explanation
- 2020-12-17; Michal Raszkowski (Computer Vision for Autonomous Vehicles), Piotr Krzywicki: Deep Learning in robotic manipulation
- 2021-01-14;
Karol Kowalski, Marcin Wierzbiński Gravitational-wave detectors with machine learning)
- 2021-01-28; Philip Smolenski-Jensen (AlphaFold - state-of-the-art protein folding model
), Maciej Mikula Agent57- Outperforming the Atari Human Benchmark
- 2021-03-04
- 2021-03-18; Marcin Wierzbiński - LSTM vs GRU; Zuzanna Opała (Robust High-dimensional Memory-augmented Neural Networks)
- 2021-04-08; Maciej Mikuła - Relational inductive biases, deep learning, and graph networks; Jakub Modrzewski - Stock Market’s Price Movement Prediction With LSTM Neural Networks
- 2021-04-29; Philip Smolenski-Jensen (CURL - Contrastive Unsupervised Representations for Reinforcement Learning)
- 2021-05-20; Zuzanna Kwiatkowska (On gradient-based saliency maps in deep learning: presentation, paper);
- 2021-06-10; Wojciech Jabłoński (TurboDARTS - better, faster, more efficient Neural Architecture Search); Jakub Jasiulewicz - Pretrained Transformers As Universal Computation Engines (paper, paper, presentation), Marta Mysiurska - ?; Piotr Krzywicki – Lessons learned implementing real-world robot learning system
Plan spotkań 2019/2020
Plan spotkań 2018/2019
Plan spotkań 2017/2018
- 2017-10-05; Spotkanie organizacyjne
- 2017-10-12; Propozycje prac magisterskich - NVidia
- 2017-10-19; Propozycje prac magisterskich - Henryk Michalewski
- 2017-10-26; Understanding deep learning requires rethinking generalization, https://arxiv.org/abs/1611.03530 , prezentacja
- 2017-11-02; Distilling the Knowledge in a Neural Network, https://arxiv.org/abs/1503.02531
- 2017-11-09; "Why Should I Trust You?": Explaining the Predictions of Any Classifier, https://arxiv.org/abs/1602.04938 prezentacja
- 2017-11-16; Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images, https://arxiv.org/abs/1412.1897
- 2017-11-23; Visualizing statistical models: Removing the blindfold, http://had.co.nz/stat645/model-vis.pdf
- 2017-11-30; mlr: Machine Learning in R, http://jmlr.org/papers/v17/15-066.html
- 2017-12-07
- 2017-12-14; Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics, https://arxiv.org/pdf/1705.07115.pdf
- 2017-12-21; Deep Reinforcement Learning: Pong from Pixels, http://karpathy.github.io/2016/05/31/rl/ https://docs.google.com/presentation/d/1lHvatcCaJXit7Uub4pBDOD_s32VZKq5NRZPpxcaDf8M/edit#slide=id.p3
- 2018-01-11; Scikit-learn & Pandas
- 2018-01-18; Visualizing and Understanding Convolutional Networks, https://arxiv.org/abs/1311.2901
- 2018-01-25; A Critical Review of Recurrent Neural Networks for Sequence Learning https://arxiv.org/abs/1506.00019
- 2018-03-01; A Unified Approach to Interpreting Model Predictions https://arxiv.org/abs/1705.07874
- 2018-03-08
- 2018-03-15; Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm https://arxiv.org/abs/1712.01815, Mastering the game of Go without human knowledge https://www.nature.com/articles/nature24270?sf123103138=1
- 2018-03-22; Playing Atari with Deep Reinforcement Learning https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf oraz Continuous control with deep reinforcement learning https://arxiv.org/abs/1509.02971
- 2018-03-28; Paweł Góra, zaczynamy 10:45
- 2018-04-05; brak seminarium
- 2018-04-12; Dynamic Routing Between Capsules https://arxiv.org/abs/1710.09829
- 2018-04-19
- 2018-04-26; Matrix Capsules with EM Routing https://openreview.net/forum?id=HJWLfGWRb
- 2018-05-10; GA2M - Interpretable Generalized Additive Models (+ applications) - Przemysław Horban
- 2018-05-17; NeuroSAT - Learning a SAT Solver from Single-Bit Supervision https://arxiv.org/abs/1802.03685
- 2018-05-24; Anchors: High-Precision Model-Agnostic Explanations https://homes.cs.washington.edu/~marcotcr/aaai18.pdf
- 2018-06-07; Continuous control with deep reinforcement learning https://arxiv.org/abs/1509.02971
|
请发表评论