• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

agrawal-priyank/machine-learning-regression: Built house price prediction model ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

agrawal-priyank/machine-learning-regression

开源软件地址(OpenSource Url):

https://github.com/agrawal-priyank/machine-learning-regression

开源编程语言(OpenSource Language):

Jupyter Notebook 100.0%

开源软件介绍(OpenSource Introduction):

Machine Learning Regression: House Sales Price Prediction Models

Description

  • Implemented linear regression and k nearest neighbors algorithm with gradient descent optimization to make an optimal model for predicting house prices using the Seattle King County dataset.
  • Performed feature engineering and selection using lasso and ridge penalties to eliminate features which had little or no impact on the residual sum of squares error.

Code

  1. Simple Linear Regression
  2. Multiple Linear Regression
  3. Multiple Linear Regression with Gradient Descent Optimization
  4. Polynomial Regression
  5. Ridge Regression
  6. Ridge Regression with Gradient Descent Optimization
  7. Lasso Regression
  8. Nearest Neighbor Regression

Data

Programming Language

Python

Packages

Anaconda, Graphlab Create Installation guide

Tools/IDE

Jupyter notebook (IPython)

How to use it

  1. Fork this repository to have your own copy
  2. Clone your copy on your local system
  3. Install necessary packages

Note

This repository does not contain optimal machine learning models! It only assesses various models that can be built using different machine learning algorithms (either implemented or used directly from Graphlab Create package) to perform different tasks.




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
rashida048/Machine-Learning-With-Python发布时间:2022-08-19
下一篇:
xeneta/LeadQualifier: Qualify sales leads with machine learning发布时间:2022-08-19
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap