• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

ColasGael/Machine-Learning-for-Solar-Energy-Prediction: Predict the Power Produc ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

ColasGael/Machine-Learning-for-Solar-Energy-Prediction

开源软件地址(OpenSource Url):

https://github.com/ColasGael/Machine-Learning-for-Solar-Energy-Prediction

开源编程语言(OpenSource Language):

Python 54.8%

开源软件介绍(OpenSource Introduction):

Machine-Learning-for-Solar-Energy-Prediction

by Adele Kuzmiakova, Gael Colas and Alex McKeehan, graduate students from Stanford University

This is our final project for the CS229: "Machine Learning" class in Stanford (2017). Our teachers were Pr. Andrew Ng and Pr. Dan Boneh.

Language: Python, Matlab, R

Goal: predict the hourly power production of a photovoltaic power station from the measurements of a set of weather features.

This project could be decomposed in 3 parts:

  • Data Pre-processing: we processed the raw weather data files (input) from the National Oceanographic and Atmospheric Administration and the power production data files (output) from Urbana-Champaign solar farm to get meaningful numeric values on an hourly basis ;
  • Feature Selection: we run correlation analysis between the weather features and the energy output to discard useless features, we also implemented Principal Component Analysis to reduce the dimension of our dataset ;
  • Machine Learning : we compared the performances of our ML algorithms. Implemented models include Weighted Linear Regression with and without dimension reduction, Boosting Regression Trees, and artificial Neural Networks with and without vanishing temporal gradient

Our final report and poster are available at the root.




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap