• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

rasbt/stat479-machine-learning-fs18: Course material for STAT 479: Machine Learn ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

rasbt/stat479-machine-learning-fs18

开源软件地址(OpenSource Url):

https://github.com/rasbt/stat479-machine-learning-fs18

开源编程语言(OpenSource Language):

Jupyter Notebook 99.1%

开源软件介绍(OpenSource Introduction):

STAT479: Machine Learning (Fall 2018)

Instructor: Sebastian Raschka

Lecture material for the Machine Learning course (STAT 479) at University Wisconsin-Madison. For details, please see the course website at http://pages.stat.wisc.edu/~sraschka/teaching/stat479-fs2018/

Part I: Introduction

  • Lecture 1: What is Machine Learning? An Overview.
  • Lecture 2: Intro to Supervised Learning: KNN

Part II: Computational Foundations

  • Lecture 3: Using Python, Anaconda, IPython, Jupyter Notebooks
  • Lecture 4: Scientific Computing with NumPy, SciPy, and Matplotlib
  • Lecture 5: Data Preprocessing and Machine Learning with Scikit-Learn

Part III: Tree-Based Methods

Part IV: Evaluation

  • Lecture 8: Model Evaluation 1: Introduction to Overfitting and Underfitting
  • Lecture 9: Model Evaluation 2: Uncertainty Estimates and Resampling
  • Lecture 10: Model Evaluation 3: Model Selection and Cross-Validation
  • Lecture 11: Model Evaluation 4: Algorithm Selection and Statistical Tests
  • Lecture 12: Model Evaluation 5: Performance Metrics

Part V: Dimensionality Reduction

Due to time constraints, the following topics could unfortunately not be covered:

Part VI: Bayesian Learning

  • Bayes Classifiers
  • Text Data & Sentiment Analysis
  • Naive Bayes Classification

Part VII: Regression and Unsupervised Learning

  • Regression Analysis
  • Clustering

The following topics will be covered at the beginning of the Deep Learning class next Spring. Tentative outline of the DL course.

Part VIII: Introduction to Artificial Neural Networks

  • Perceptron
  • Adaline & Logistic Regression
  • SVM
  • Multilayer Perceptron

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




Teaching this class was a pleasure, and I am especially happy about how awesome the class projects turned out. Listed below are the winners of the three award categories as determined by ~210 votes. Congratulations!




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap