开源软件名称(OpenSource Name): datascienceid/machine-learning-resources开源软件地址(OpenSource Url): https://github.com/datascienceid/machine-learning-resources开源编程语言(OpenSource Language): 开源软件介绍(OpenSource Introduction): Machine Learning Resources
A curated list of awesome machine learning frameworks, libraries, courses, books and many more.
Star and Fork our repository for latest update.
kumpulan sumber ini untuk mempermudah untuk mempelajari machine learning, dengan bahasa indonesia yang mudah dipahami, selain itu juga terdapat dataset yang bisa dipraktekan dan ada conference yang bisa dipublish bagi yang melakukan penelitian dibidang ini.
Table of Contents
Free Books
Python Data Science Handbook , by Jake VanderPlas
Pengenalan Pembelajaran Mesin dan Deep Learning (Bahasa Indonesia) , by Jan Wira Gotama Putra
Bayesian Reasoning and Machine Learning , by David Barber
R Programming for Data Science , by Roger D. Peng
Think Bayes by Allen B. Downey
Mathematics for Machine Learning by Marc Peter
Interpretable Machine Learning by Christoph Molnar
Courses
Applied Machine Learning in Python by University of Michigan
Machine Learning by Stanford University
Machine Learning with Big Data by University of California, San Diego
Principles of Machine Learning by Microsoft
Machine Learning for Data Science and Analytics by Columbia University in The City of New York
Practical Deep Learning for Coders by Fast AI
Videos and Lectures
Machine Learning by Andrew Ng
Intro to Machine Learning by Eric Grimson
Machine Learning Course - CS 156
Machine Learning from Scratch using Python
Gaussian Mixture Models - The Math of Intelligence (Week 7)
Machine Learning and Data Mining Short Series for Beginner (UC Irvine)
Complete Tutorial of Apache Spark (Beginner - Intermediate)
Papers
Local algorithms for interactive clustering
On Perturbed Proximal Gradient Algorithms
Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning
Nearly optimal classification for semimetrics
A Bayesian Framework for Learning Rule Sets for Interpretable Classification
Tutorials
A Simple Approach to Predicting Customer Churn
Complete Guide to Topic Modeling
K-Means Clustering in Python
How To Implement Naive Bayes From Scratch in Python
Twitter Sentiment Analysis with NLTK
Sample Code
Practical Machine Learning with Python
Data Science From Scratch
Introducing Data Science
Machine Learning with R
Practical Data Science Cookbook
Data Science with Python (Bahasa Indonesia)
Deep Learning with PyTorch (Bahasa Indonesia)
Datasets
UCI Machine Learning Repository
Kaggle Datasets
IMDb Datasets
Machine Learning Datasets Repository
Caption Contest Data
Indonesia Family Life Survey
Conferences (Mostly in Indonesia)
Seminar Nasional Sistem Informasi
International Seminar on Intelligence Technology and Its Application
International Conference on Advanced Computer Science and Information Systems
International Conference on Science in Information Technology
International Conference on Soft Computing, Intelligent Systems, and Information Technology
International Conference on Data and Information Science
2019 International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)
International Conference on Signals and Systems
Libraries
Scikit-learn
Natural Language Toolkit
XGBoost
spaCy
CNTK
Contributing
Jika ingin berkontribusi dalam github ini, sangat disarankan untuk Pull Request
namun dengan resource berbahasa indonesia.
Frequently Ask Question (FAQ)
FAQ menjawab pertanyaan pertanyaan umum terkait repository ini mulai dari naming convention , pertanyaan dasar hingga pertanyaan lanjut.
请发表评论