• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

kaiwaehner/kafka-streams-machine-learning-examples: This project contains exampl ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

kaiwaehner/kafka-streams-machine-learning-examples

开源软件地址(OpenSource Url):

https://github.com/kaiwaehner/kafka-streams-machine-learning-examples

开源编程语言(OpenSource Language):

Java 100.0%

开源软件介绍(OpenSource Introduction):

Machine Learning + Kafka Streams Examples

This project contains examples which demonstrate how to deploy analytic models to mission-critical, scalable production leveraging Apache Kafka and its Streams API. Examples will include analytic models built with TensorFlow, Keras, H2O, Python, DeepLearning4J and other technologies.

Kafka Open Source Ecosystem for a Scalable Mission Critical Machine Learning Infrastructure

Material (Blogs Posts, Slides, Videos)

Here is some material about this topic if you want to read and listen to the theory instead of just doing hands-on:

Use Cases and Technologies

The following examples are already available including unit tests:
  • Deployment of a H2O GBM model to a Kafka Streams application for prediction of flight delays
  • Deployment of a H2O Deep Learning model to a Kafka Streams application for prediction of flight delays
  • Deployment of a pre-built TensorFlow CNN model for image recognition
  • Deployment of a DL4J model to predict the species of Iris flowers
  • Deployment of a Keras model (trained with TensorFlow backend) using the Import Model API from DeepLearning4J

More sophisticated use cases around Kafka Streams and other technologies will be added over time in this or related Github project. Some ideas:

  • Image Recognition with H2O and TensorFlow (to show the difference of using H2O instead of using just low level TensorFlow APIs)
  • Anomaly Detection with Autoencoders leveraging DeepLearning4J.
  • Cross Selling and Customer Churn Detection using classical Machine Learning algorithms but also Deep Learning
  • Stateful Stream Processing to combine different model execution steps into a more powerful workflow instead of "just" inferencing single events (a good example might be a streaming process with sliding or session windows).
  • Keras to build different models with Python, TensorFlow, Theano and other Deep Learning frameworks under the hood + Kafka Streams as generic Machine Learning infrastructure to deploy, execute and monitor these different models.
Some other Github projects exist already with more ML + Kafka content:

The most exciting and powerful example first: Streaming Machine Learning at Scale from 100000 IoT Devices with HiveMQ, Apache Kafka and TensorFLow

Here some more demos:

Requirements, Installation and Usage

The code is developed and tested on Mac and Linux operating systems. As Kafka does not support and work well on Windows, this is not tested at all.

Java 8 and Maven 3 are required. Maven will download all required dependencies.

Just download the project and run

            mvn clean package

You can do this in main directory or each module separately.

Apache Kafka 2.5 is currently used. The code is also compatible with Kafka and Kafka Streams 1.1 and 2.x.

Please make sure to run the Maven build without any changes first. If it works without errors, you can change library versions, Java version, etc. and see if it still works or if you need to adjust code.

Every examples includes an implementation and an unit test. The examples are very simple and lightweight. No further configuration is needed to build and run it. Though, for this reason, the generated models are also included (and increase the download size of the project).

The unit tests use some Kafka helper classes like EmbeddedSingleNodeKafkaCluster in package com.github.megachucky.kafka.streams.machinelearning.test.utils so that you can run it without any other configuration or Kafka setup. If you want to run an implementation of a main class in package com.github.megachucky.kafka.streams.machinelearning, you need to start a Kafka cluster (with at least one Zookeeper and one Kafka broker running) and also create the required topics. So check out the unit tests first.

Example 1 - Gradient Boosting with H2O.ai for Prediction of Flight Delays

Detailed info in h2o-gbm

Example 2 - Convolutional Neural Network (CNN) with TensorFlow for Image Recognition

Detailed info in tensorflow-image-recognition

Example 3 - Iris Prediction using a Neural Network with DeepLearning4J (DL4J)

Detailed info in dl4j-deeplearning-iris

Example 4 - Python + Keras + TensorFlow + DeepLearning4j

Detailed info in tensorflow-kerasm




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap