• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

tirthajyoti/Machine-Learning-with-Python: Practice and tutorial-style notebooks ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

tirthajyoti/Machine-Learning-with-Python

开源软件地址(OpenSource Url):

https://github.com/tirthajyoti/Machine-Learning-with-Python

开源编程语言(OpenSource Language):

Jupyter Notebook 99.8%

开源软件介绍(OpenSource Introduction):

License GitHub forks GitHub stars PRs Welcome

Python Machine Learning Jupyter Notebooks (ML website)

Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here)

ml-ds


Also check out these super-useful Repos that I curated

Requirements

  • Python 3.6+
  • NumPy (pip install numpy)
  • Pandas (pip install pandas)
  • Scikit-learn (pip install scikit-learn)
  • SciPy (pip install scipy)
  • Statsmodels (pip install statsmodels)
  • MatplotLib (pip install matplotlib)
  • Seaborn (pip install seaborn)
  • Sympy (pip install sympy)
  • Flask (pip install flask)
  • WTForms (pip install wtforms)
  • Tensorflow (pip install tensorflow>=1.15)
  • Keras (pip install keras)
  • pdpipe (pip install pdpipe)

You can start with this article that I wrote in Heartbeat magazine (on Medium platform):

"Some Essential Hacks and Tricks for Machine Learning with Python"

Essential tutorial-type notebooks on Pandas and Numpy

Jupyter notebooks covering a wide range of functions and operations on the topics of NumPy, Pandans, Seaborn, Matplotlib etc.

Tutorial-type notebooks covering regression, classification, clustering, dimensionality reduction, and some basic neural network algorithms

Regression

  • Simple linear regression with t-statistic generation


Classification


Clustering

  • K-means clustering (Here is the Notebook)

  • Affinity propagation (showing its time complexity and the effect of damping factor) (Here is the Notebook)

  • Mean-shift technique (showing its time complexity and the effect of noise on cluster discovery) (Here is the Notebook)

  • DBSCAN (showing how it can generically detect areas of high density irrespective of cluster shapes, which the k-means fails to do) (Here is the Notebook)

  • Hierarchical clustering with Dendograms showing how to choose optimal number of clusters (Here is the Notebook)


Dimensionality reduction

  • Principal component analysis


Deep Learning/Neural Network


Random data generation using symbolic expressions


Synthetic data generation techniques

Simple deployment examples (serving ML models on web API)


Object-oriented programming with machine learning

Implementing some of the core OOP principles in a machine learning context by building your own Scikit-learn-like estimator, and making it better.

See my articles on Medium on this topic.


Unit testing ML code with Pytest

Check the files and detailed instructions in the Pytest directory to understand how one should write unit testing code/module for machine learning models


Memory and timing profiling

Profiling data science code and ML models for memory footprint and computing time is a critical but often overlooed area. Here are a couple of Notebooks showing the ideas,




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap