It's a little awkward, but if you check the definitions of lower_bound
and upper_bound
from the standard, you'll see that the definition of lower_bound
puts the dereferenced iterator as the first parameter of the comparison (and the value second), whereas upper_bound
puts the dereferenced iterator second (and the value first).
So, I haven't tested this but I think you'd want:
std::lower_bound(vec.begin(), vec.end(), 3.142, [](const MS &lhs, double rhs) {
return lhs.aT < rhs;
});
and
std::upper_bound(vec.begin(), vec.end(), 3.142, [](double lhs, const MS &rhs) {
return lhs < rhs.aT;
});
This is pretty nasty, and without looking up a few more things I'm not sure you're actually entitled to assume that the implementation uses the comparator only in the way it's described in the text - that's a definition of the result, not the means to get there. It also doesn't help with binary_search
or equal_range
.
It's not explicitly stated in 25.3.3.1 that the iterator's value type must be convertible to T, but it's sort of implied by the fact that the requirement for the algorithm is that T (in this case, double
) must be LessThanComparable, not that T must be comparable to the value type of the iterator in any particular order.
So I think it's better just to always use a lambda (or functor) that compares two MS structs, and instead of passing a double as a value, pass a dummy MS with the correct field set to the value you're looking for:
std::upper_bound(vec.begin(), vec.end(), MS(3.142,0,0), [](const MS &lhs, const MS &rhs) {
return lhs.aT < rhs.aT;
});
If you don't want to give MS a constructor (because you want it to be POD), then you can write a function to create your MS object:
MS findA(double d) {
MS result = {d, 0, 0};
return result;
}
MS findB(double d) {
MS result = {0, d, 0};
return result;
}
Really, now that there are lambdas, for this job we want a version of binary search that takes a unary "comparator":
double d = something();
unary_upper_bound(vec.begin(), vec.end(), [d](const MS &rhs) {
return d < rhs.aT;
});
C++0x doesn't provide it, though.