Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
949 views
in Technique[技术] by (71.8m points)

algorithm - Find the smallest regular number that is not less than N

Regular numbers are numbers that evenly divide powers of 60. As an example, 602 = 3600 = 48 × 75, so both 48 and 75 are divisors of a power of 60. Thus, they are also regular numbers.

This is an extension of rounding up to the next power of two.

I have an integer value N which may contain large prime factors and I want to round it up to a number composed of only small prime factors (2, 3 and 5)

Examples:

  • f(18) == 18 == 21 * 32
  • f(19) == 20 == 22 * 51
  • f(257) == 270 == 21 * 33 * 51

What would be an efficient way to find the smallest number satisfying this requirement?

The values involved may be large, so I would like to avoid enumerating all regular numbers starting from 1 or maintaining an array of all possible values.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

One can produce arbitrarily thin a slice of the Hamming sequence around the n-th member in time ~ n^(2/3) by direct enumeration of triples (i,j,k) such that N = 2^i * 3^j * 5^k.

The algorithm works from log2(N) = i+j*log2(3)+k*log2(5); enumerates all possible ks and for each, all possible js, finds the top i and thus the triple (k,j,i) and keeps it in a "band" if inside the given "width" below the given high logarithmic top value (when width < 1 there can be at most one such i) then sorts them by their logarithms.

WP says that n ~ (log N)^3, i.e. run time ~ (log N)^2. Here we don't care for the exact position of the found triple in the sequence, so all the count calculations from the original code can be thrown away:

slice hi w = sortBy (compare `on` fst) b where       -- hi>log2(N) is a top value
  lb5=logBase 2 5 ; lb3=logBase 2 3                  -- w<1 (NB!) is log2(width)
  b  = concat                                        -- the slice
      [ [ (r,(i,j,k)) | frac < w ]                   -- store it, if inside width
        | k <- [ 0 .. floor ( hi   /lb5) ],  let p = fromIntegral k*lb5,
          j <- [ 0 .. floor ((hi-p)/lb3) ],  let q = fromIntegral j*lb3 + p,
          let (i,frac)=properFraction(hi-q) ;    r = hi - frac ]   -- r = i + q
                    -- properFraction 12.7 == (12, 0.7)

-- update: in pseudocode:
def slice(hi, w):
    lb5, lb3 = logBase(2, 5), logBase(2, 3)  -- logs base 2 of 5 and 3
    for k from 0 step 1 to floor(hi/lb5) inclusive:
        p = k*lb5
        for j from 0 step 1 to floor((hi-p)/lb3) inclusive:
           q = j*lb3 + p
           i = floor(hi-q)
           frac = hi-q-i                     -- frac < 1 , always
           r = hi - frac                     -- r == i + q
           if frac < w:
              place (r,(i,j,k)) into the output array
   sort the output array's entries by their "r" component
        in ascending order, and return thus sorted array

Having enumerated the triples in the slice, it is a simple matter of sorting and searching, taking practically O(1) time (for arbitrarily thin a slice) to find the first triple above N. Well, actually, for constant width (logarithmic), the amount of numbers in the slice (members of the "upper crust" in the (i,j,k)-space below the log(N) plane) is again m ~ n^2/3 ~ (log N)^2 and sorting takes m log m time (so that searching, even linear, takes ~ m run time then). But the width can be made smaller for bigger Ns, following some empirical observations; and constant factors for the enumeration of triples are much higher than for the subsequent sorting anyway.

Even with constant width (logarthmic) it runs very fast, calculating the 1,000,000-th value in the Hamming sequence instantly and the billionth in 0.05s.

The original idea of "top band of triples" is due to Louis Klauder, as cited in my post on a DDJ blogs discussion back in 2008.

update: as noted by GordonBGood in the comments, there's no need for the whole band but rather just about one or two values above and below the target. The algorithm is easily amended to that effect. The input should also be tested for being a Hamming number itself before proceeding with the algorithm, to avoid round-off issues with double precision. There are no round-off issues comparing the logarithms of the Hamming numbers known in advance to be different (though going up to a trillionth entry in the sequence uses about 14 significant digits in logarithm values, leaving only 1-2 digits to spare, so the situation may in fact be turning iffy there; but for 1-billionth we only need 11 significant digits).

update2: turns out the Double precision for logarithms limits this to numbers below about 20,000 to 40,000 decimal digits (i.e. 10 trillionth to 100 trillionth Hamming number). If there's a real need for this for such big numbers, the algorithm can be switched back to working with the Integer values themselves instead of their logarithms, which will be slower.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...