it seems like a percolation problem.
The following link has your answer if you have scipy installed.
http://dragly.org/2013/03/25/working-with-percolation-clusters-in-python/
from pylab import *
from scipy.ndimage import measurements
z2 = array([[0,0,0,0,0,0,0,0,0,0],
[0,0,1,0,0,0,0,0,0,0],
[0,0,1,0,1,0,0,0,1,0],
[0,0,0,0,0,0,1,0,1,0],
[0,0,0,0,0,0,1,0,0,0],
[0,0,0,0,1,0,1,0,0,0],
[0,0,0,0,0,1,1,0,0,0],
[0,0,0,1,0,1,0,0,0,0],
[0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0]])
This will identify the clusters:
lw, num = measurements.label(z2)
print lw
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 2, 0, 0, 0, 3, 0],
[0, 0, 0, 0, 0, 0, 4, 0, 3, 0],
[0, 0, 0, 0, 0, 0, 4, 0, 0, 0],
[0, 0, 0, 0, 5, 0, 4, 0, 0, 0],
[0, 0, 0, 0, 0, 4, 4, 0, 0, 0],
[0, 0, 0, 6, 0, 4, 0, 0, 0, 0],
[0, 0, 0, 0, 7, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
The following will calculate their area.
area = measurements.sum(z2, lw, index=arange(lw.max() + 1))
print area
[ 0. 2. 1. 2. 6. 1. 1. 1.]
This gives what you expect, although I would think that you would have a cluster with 8 members by eye-percolation.