There's an interesting 'full-precision-summation' algorithm here, which guarantees that the final sum is independent of the order of the summands (recipe given in Python; but it shouldn't be too difficult to translate to other languages). Note that the recipe as given in that link isn't perfectly correct: the main accumulation loop is fine, but in the final step that converts the list of accumulated partial sums to a single floating-point result (the very last line of the msum
recipe), one needs to be a little bit more careful than simply summing the partial sums in order to get a correctly-rounded result. See the comments below the recipe, and Python's implementation (linked below) for a way to fix this.
It does use a form of arbitrary-precision arithmetic to hold partial sums (the intermediate sums are represented as 'non-overlapping' sums of doubles), but may nevertheless be fast enough, especially when all the inputs are of roughly the same magnitude. And it always gives a correctly rounded result, so accuracy is as good as you could hope for and the final sum is independent of the order of the summands. It's based on this paper (Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates) by Jonathan Shewchuk.
Python uses this algorithm for its implementation of math.fsum, which does correctly-rounded order-independent summation; you can see the C implementation that Python uses here--- look for the math_fsum function.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…