This page describes the algorithm easier than Wikipedia, without extra steps to calculate the means etc. : http://faculty.cs.niu.edu/~hutchins/csci230/best-fit.htm . Almost quoted from there, in C++ it's:
#include <vector>
#include <cmath>
struct Point {
double _x, _y;
};
struct Line {
double _slope, _yInt;
double getYforX(double x) {
return _slope*x + _yInt;
}
// Construct line from points
bool fitPoints(const std::vector<Point> &pts) {
int nPoints = pts.size();
if( nPoints < 2 ) {
// Fail: infinitely many lines passing through this single point
return false;
}
double sumX=0, sumY=0, sumXY=0, sumX2=0;
for(int i=0; i<nPoints; i++) {
sumX += pts[i]._x;
sumY += pts[i]._y;
sumXY += pts[i]._x * pts[i]._y;
sumX2 += pts[i]._x * pts[i]._x;
}
double xMean = sumX / nPoints;
double yMean = sumY / nPoints;
double denominator = sumX2 - sumX * xMean;
// You can tune the eps (1e-7) below for your specific task
if( std::fabs(denominator) < 1e-7 ) {
// Fail: it seems a vertical line
return false;
}
_slope = (sumXY - sumX * yMean) / denominator;
_yInt = yMean - _slope * xMean;
return true;
}
};
Please, be aware that both this algorithm and the algorithm from Wikipedia ( http://en.wikipedia.org/wiki/Simple_linear_regression#Fitting_the_regression_line ) fail in case the "best" description of points is a vertical line. They fail because they use
y = k*x + b
line equation which intrinsically is not capable to describe vertical lines. If you want to cover also the cases when data points are "best" described by vertical lines, you need a line fitting algorithm which uses
A*x + B*y + C = 0
line equation. You can still modify the current algorithm to produce that equation:
y = k*x + b <=>
y - k*x - b = 0 <=>
B=1, A=-k, C=-b
In terms of the above code:
B=1, A=-_slope, C=-_yInt
And in "then" block of the if
checking for denominator equal to 0, instead of // Fail: it seems a vertical line
, produce the following line equation:
x = xMean <=>
x - xMean = 0 <=>
A=1, B=0, C=-xMean
I've just noticed that the original article I was referring to has been deleted. And this web page proposes a little different formula for line fitting: http://hotmath.com/hotmath_help/topics/line-of-best-fit.html
double denominator = sumX2 - 2 * sumX * xMean + nPoints * xMean * xMean;
...
_slope = (sumXY - sumY*xMean - sumX * yMean + nPoints * xMean * yMean) / denominator;
The formulas are identical because nPoints*xMean == sumX
and nPoints*xMean*yMean == sumX * yMean == sumY * xMean
.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…