I'm guessing this is an easy fix, but I'm running into an issue that it's taking nearly an hour to save a pandas dataframe to a csv file using the to_csv() function. I'm using anaconda python 2.7.12 with pandas (0.19.1).
import os
import glob
import pandas as pd
src_files = glob.glob(os.path.join('/my/path', "*.csv.gz"))
# 1 - Takes 2 min to read 20m records from 30 files
for file_ in sorted(src_files):
stage = pd.DataFrame()
iter_csv = pd.read_csv(file_
, sep=','
, index_col=False
, header=0
, low_memory=False
, iterator=True
, chunksize=100000
, compression='gzip'
, memory_map=True
, encoding='utf-8')
df = pd.concat([chunk for chunk in iter_csv])
stage = stage.append(df, ignore_index=True)
# 2 - Takes 55 min to write 20m records from one dataframe
stage.to_csv('output.csv'
, sep='|'
, header=True
, index=False
, chunksize=100000
, encoding='utf-8')
del stage
I've confirmed the hardware and memory are working, but these are fairly wide tables (~ 100 columns) of mostly numeric (decimal) data.
Thank you,
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…