There exist an algorithm for generating such random numbers.
Originally created for MATLAB, there is an R implementation of it:
Surrogate::RandVec
Citation from MATLAB script comment:
% This generates an n by m array x, each of whose m columns
% contains n random values lying in the interval [a,b], but
% subject to the condition that their sum be equal to s. The
% scalar value s must accordingly satisfy n*a <= s <= n*b. The
% distribution of values is uniform in the sense that it has the
% conditional probability distribution of a uniform distribution
% over the whole n-cube, given that the sum of the x's is s.
%
% The scalar v, if requested, returns with the total
% n-1 dimensional volume (content) of the subset satisfying
% this condition. Consequently if v, considered as a function
% of s and divided by sqrt(n), is integrated with respect to s
% from s = a to s = b, the result would necessarily be the
% n-dimensional volume of the whole cube, namely (b-a)^n.
%
% This algorithm does no "rejecting" on the sets of x's it
% obtains. It is designed to generate only those that satisfy all
% the above conditions and to do so with a uniform distribution.
% It accomplishes this by decomposing the space of all possible x
% sets (columns) into n-1 dimensional simplexes. (Line segments,
% triangles, and tetrahedra, are one-, two-, and three-dimensional
% examples of simplexes, respectively.) It makes use of three
% different sets of 'rand' variables, one to locate values
% uniformly within each type of simplex, another to randomly
% select representatives of each different type of simplex in
% proportion to their volume, and a third to perform random
% permutations to provide an even distribution of simplex choices
% among like types. For example, with n equal to 3 and s set at,
% say, 40% of the way from a towards b, there will be 2 different
% types of simplex, in this case triangles, each with its own
% area, and 6 different versions of each from permutations, for
% a total of 12 triangles, and these all fit together to form a
% particular planar non-regular hexagon in 3 dimensions, with v
% returned set equal to the hexagon's area.
%
% Roger Stafford - Jan. 19, 2006
Example:
test <- Surrogate::RandVec(a=1000, b=100000, s=2000000, n=140, m=1, Seed=sample(1:1000, size = 1))
sum(test$RandVecOutput)
# 2000000
hist(test$RandVecOutput)
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…