Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
492 views
in Technique[技术] by (71.8m points)

r - Fastest way to read large Excel xlsx files? To parallelize or not?

My questions are:

  • What is the fastest way to read large(ish) .xlsx Excel files into R? 10 to 200 MB xlsx files, with multiple sheets.

  • Can some kind of parallel processing be used, e.g. each core reading a separate sheet of a multi-sheet Excel file?

  • Is there any other kind of optimisation that can be performed?

What I have understood (and what I haven't) so far:

  • if reading from spinning disks, as I will, parallel processing may actually slow down the reading as multiple processes try to read from the same file. However, parallel process may help with things like converting and inferring data types? Not sure how much readxl spends reading from disk (which I assume is IO bound) vs converting data types (which I guess is CPU bound).
  • This may be different with SSD drives. I might copy data to an SSD drive and read from there if there's a massive improvement.
  • data.table::fread speeds up the reading of text files (although I don't fully understand why) but it cannot be used for excel files - or can it?
  • I understand from this answer that readxl tends to be faster than openxlsx

I am interested in tabular data only; I am not interested in the Excel formatting, nor in charts, text labels or any other kind of data.

I am possibly looking to import into tidyverse tibbles, but not necessarily. I will then need to export the tables into a Microsoft SQL Server.

Some background: I mostly use Python and am totally new to R. Reading large Excel files in Python is painfully slow. I have already seen that R's readxl is much faster than Python's pandas (on a 15-sheet xlsx, each sheet with 10,000 rows and 32 columns: 5.6 seconds for readxl vs 33 seconds for pandas), so that's great! I would, however, still like to understand if there is any way to make the import even faster. I can read the files with R, export them to SQL, then continue the rest of my workflow with Python reading from SQL.

I don't think converting to CSV is the best option, especially not when readxl is so much faster than Python anyway; basically converting to csv may easily take longer than the time I'd save by reading from csv rather than excel. Plus, at least with Python (I don't really know enough R to have tested this thoroughly with readxl), inferring data types works much better with xlsx than with csv.

My code (any critique or suggestion is more than welcome):

library(readxl)
library(tidyverse)
library(tictoc)


this.dir <- dirname(parent.frame(2)$ofile)
setwd(this.dir)

tic("readxl")

path <- "myfile.xlsx"
sheetnames <- excel_sheets(path)
mylist <- lapply(excel_sheets(path), read_excel, path = path)

names(mylist) <- sheetnames
toc()
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You could try to run it in parallel using the parallel package, but it is a bit hard to estimate how fast it will be without sample data:

library(parallel)
library(readxl)

excel_path <- ""
sheets <- excel_sheets(excel_path)

Make a cluster with a specified number of cores:

cl <- makeCluster(detectCores() - 1)

Use parLapplyLB to go through the excel sheets and read them in parallel using load balancing:

parLapplyLB(cl, sheets, function(sheet, excel_path) {
  readxl::read_excel(excel_path, sheet = sheet)
}, excel_path)

You can use the package microbenchmark to test how fast certain options are:

library(microbenchmark)

microbenchmark(
  lapply = {lapply(sheets, function(sheet) {
    read_excel(excel_path, sheet = sheet)
  })},
  parralel = {parLapplyLB(cl, sheets, function(sheet, excel_path) {
    readxl::read_excel(excel_path, sheet = sheet)
  }, excel_path)},
  times = 10
)

In my case, the parallel version is faster:

Unit: milliseconds
     expr       min        lq     mean    median        uq      max neval
   lapply 133.44857 167.61801 179.0888 179.84616 194.35048 226.6890    10
 parralel  58.94018  64.96452 118.5969  71.42688  80.48588 316.9914    10

The test file contains of 6 sheets, each containing this table:

    test test1 test3 test4 test5
 1     1     1     1     1     1
 2     2     2     2     2     2
 3     3     3     3     3     3
 4     4     4     4     4     4
 5     5     5     5     5     5
 6     6     6     6     6     6
 7     7     7     7     7     7
 8     8     8     8     8     8
 9     9     9     9     9     9
10    10    10    10    10    10
11    11    11    11    11    11
12    12    12    12    12    12
13    13    13    13    13    13
14    14    14    14    14    14
15    15    15    15    15    15

Note: you can use stopCluster(cl) to shut down the workers when the process is finished.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...