Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
673 views
in Technique[技术] by (71.8m points)

r - Using discrete custom color in a plotly heatmap

I'm trying to generate a plotly heatmap, where I'd like the colors to be specified by a discrete scale.

Here's what I mean:

Generate data with 2 clusters and hierarchically cluster them:

require(permute)
set.seed(1)
mat <- rbind(cbind(matrix(rnorm(2500,2,1),nrow=25,ncol=500),matrix(rnorm(2500,-2,1),nrow=25,ncol=500)),
             cbind(matrix(rnorm(2500,-2,1),nrow=25,ncol=500),matrix(rnorm(2500,2,1),nrow=25,ncol=500)))
rownames(mat) <- paste("g",1:50,sep=".")
colnames(mat) <- paste("s",1:1000,sep=".")
hc.col <- hclust(dist(t(mat)))
dd.col <- as.dendrogram(hc.col)
col.order <- order.dendrogram(dd.col)
hc.row <- hclust(dist(mat))
dd.row <- as.dendrogram(hc.row)
row.order <- order.dendrogram(dd.row)
mat <- mat[row.order,col.order]

Brake the values in mat to intervals and set a color for each interval:

require(RColorBrewer)
mat.intervals <- cut(mat,breaks=6)
interval.mat <- matrix(mat.intervals,nrow=50,ncol=1000,dimnames=list(rownames(mat),colnames(mat)))
interval.cols <- brewer.pal(6,"Set2")
names(interval.cols) <- levels(mat.intervals)

Using ggplot2 I draw this heatmap this way (also having the legend specify the discrete colors and respective ranges):

require(reshape2)
interval.df <- reshape2::melt(interval.mat,varnames=c("gene","sample"),value.name="expr")
require(ggplot2)
ggplot(interval.df,aes(x=sample,y=gene,fill=expr))+
  geom_tile(color=NA)+theme_bw()+
  theme(strip.text.x=element_text(angle=90,vjust=1,hjust=0.5,size=6),panel.spacing=unit(0.025,"cm"),legend.key=element_blank(),plot.margin=unit(c(1,1,1,1),"cm"),legend.key.size=unit(0.25,"cm"),panel.border=element_blank(),strip.background=element_blank(),axis.ticks.y=element_line(size=0.25))+
  scale_color_manual(drop=FALSE,values=interval.cols,labels=names(interval.cols),name="expr")+
  scale_fill_manual(drop=FALSE,values=interval.cols,labels=names(interval.cols),name="expr")

which gives: enter image description here

This is my attempt to generate it with plotly:

plot_ly(z=mat,x=colnames(mat),y=rownames(mat),type="heatmap",colors=interval.cols)

which gives:

enter image description here

The figures are not identical. In the ggplot2 figure the clusters are much more pronounced in contrast to the plotly figure.

Is there any way to parametrize the plotly command to give something more similar to the ggplot2 figure?

Also, is it possible to make the plotly legend discrete - similar to that in the ggplot2 figure?

Now suppose I want to facet the clusters. In the ggplot2 case I'd do:

require(dplyr)
facet.df <- data.frame(sample=c(paste("s",1:500,sep="."),paste("s",501:1000,sep=".")),facet=c(rep("f1",500),rep("f2",500)),stringsAsFactors=F)
interval.df <- left_join(interval.df,facet.df,by=c("sample"="sample"))
interval.df$facet <- factor(interval.df$facet,levels=c("f1","f2"))

And then plot:

ggplot(interval.df,aes(x=sample,y=gene,fill=expr))+facet_grid(~facet,scales="free",space="free",switch="both")+
  geom_tile(color=NA)+labs(x="facet",y="gene")+theme_bw()+
  theme(strip.text.x=element_text(angle=90,vjust=1,hjust=0.5,size=6),panel.spacing=unit(0.05,"cm"),plot.margin=unit(c(1,1,1,1),"cm"),legend.key.size=unit(0.25,"cm"),panel.border=element_blank(),strip.background=element_blank(),axis.ticks.y=element_line(size=0.25))+
  scale_color_manual(drop=FALSE,values=interval.cols,labels=names(interval.cols),name="expr")+
  scale_fill_manual(drop=FALSE,values=interval.cols,labels=names(interval.cols),name="expr")

Which gives: enter image description here

So the clusters are separated by the panel.spacing and look even more pronounced. Is there any way to achieve this faceting with plotly?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Let's get a discrete colorscale

df_colors = data.frame(range=c(0:11), colors=c(0:11))
color_s <- setNames(data.frame(df_colors$range, df_colors$colors), NULL)
for (i in 1:12) {
  color_s[[2]][[i]] <- interval.cols[[(i + 1) / 2]]
  color_s[[1]][[i]] <-  i / 12 - (i %% 2) / 12
}

And get a nice colorbar by setting ticktext and squeezing it (len=0.2)

colorbar=list(tickmode='array', tickvals=c(1:6), ticktext=levels(mat.intervals), len=0.2)

enter image description here All the code which needs to be added to your example

df_colors = data.frame(range=c(0:11), colors=c(0:11))
color_s <- setNames(data.frame(df_colors$range, df_colors$colors), NULL)

for (i in 1:12) {
  color_s[[2]][[i]] <- interval.cols[[(i + 1) / 2]]
  color_s[[1]][[i]] <-  i / 12 - (i %% 2) / 12
}


plot_ly(z=c(interval.df$expr), x=interval.df$sample, y=interval.df$gene, colorscale = color_s, type = "heatmap", hoverinfo = "x+y+z", colorbar=list(tickmode='array', tickvals=c(1:6), ticktext=levels(mat.intervals), len=0.2))

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...