Ok, here's my take on the RPN 'requirement'. I heavily favor natural (automatic) attribute propagation over semantic actions (see Boost Spirit: "Semantic actions are evil"?)
I consider the other options (uglifying) optimizations. You might do them if you're happy with the overall design and don't mind making it harder to maintain :)
Live On Coliru
Beyond the sample from my comment that you've already studied, I added that RPN transformation step:
namespace RPN {
using cell = boost::variant<AST::operation, AST::value, AST::variable>;
using rpn_stack = std::vector<cell>;
struct transform : boost::static_visitor<> {
void operator()(rpn_stack& stack, AST::expression const& e) const {
boost::apply_visitor(boost::bind(*this, boost::ref(stack), ::_1), e);
}
void operator()(rpn_stack& stack, AST::bin_expr const& e) const {
(*this)(stack, e.lhs);
(*this)(stack, e.rhs);
stack.push_back(e.op);
}
void operator()(rpn_stack& stack, AST::value const& v) const { stack.push_back(v); }
void operator()(rpn_stack& stack, AST::variable const& v) const { stack.push_back(v); }
};
}
That's all! Use it like so, e.g.:
RPN::transform compiler;
RPN::rpn_stack program;
compiler(program, expr);
for (auto& instr : program) {
std::cout << instr << " ";
}
Which makes the output:
Parsing success: (3 + (8 * 9))
3 8 9 * +
Full Listing
Live On Coliru
//#define BOOST_SPIRIT_DEBUG
#include <boost/phoenix.hpp>
#include <boost/bind.hpp>
#include <boost/fusion/adapted/struct.hpp>
#include <boost/spirit/include/lex_lexertl.hpp>
#include <boost/spirit/include/qi.hpp>
#include <algorithm>
#include <iostream>
#include <string>
#include <utility>
#include <vector>
namespace lex = boost::spirit::lex;
namespace qi = boost::spirit::qi;
namespace phoenix = boost::phoenix;
struct operation
{
enum type
{
add,
sub,
mul,
div
};
friend std::ostream& operator<<(std::ostream& os, type op) {
switch (op) {
case type::add: return os << "+";
case type::sub: return os << "-";
case type::mul: return os << "*";
case type::div: return os << "/";
}
return os << "<" << static_cast<int>(op) << ">";
}
};
template<typename Lexer>
class expression_lexer
: public lex::lexer<Lexer>
{
public:
//typedef lex::token_def<operation::type> operator_token_type;
typedef lex::token_def<lex::omit> operator_token_type;
typedef lex::token_def<double> value_token_type;
typedef lex::token_def<std::string> variable_token_type;
typedef lex::token_def<lex::omit> parenthesis_token_type;
typedef std::pair<parenthesis_token_type, parenthesis_token_type> parenthesis_token_pair_type;
typedef lex::token_def<lex::omit> whitespace_token_type;
expression_lexer()
: operator_add('+'),
operator_sub('-'),
operator_mul("[x*]"),
operator_div("[:/]"),
value("\d+(\.\d+)?"),
variable("%(\w+)"),
parenthesis({
std::make_pair(parenthesis_token_type('('), parenthesis_token_type(')')),
std::make_pair(parenthesis_token_type('['), parenthesis_token_type(']'))
}),
whitespace("[ \t]+")
{
this->self
+= operator_add [lex::_val = operation::add]
| operator_sub [lex::_val = operation::sub]
| operator_mul [lex::_val = operation::mul]
| operator_div [lex::_val = operation::div]
| value
| variable [lex::_val = phoenix::construct<std::string>(lex::_start + 1, lex::_end)]
| whitespace [lex::_pass = lex::pass_flags::pass_ignore]
;
std::for_each(parenthesis.cbegin(), parenthesis.cend(),
[&](parenthesis_token_pair_type const& token_pair)
{
this->self += token_pair.first | token_pair.second;
}
);
}
operator_token_type operator_add;
operator_token_type operator_sub;
operator_token_type operator_mul;
operator_token_type operator_div;
value_token_type value;
variable_token_type variable;
std::vector<parenthesis_token_pair_type> parenthesis;
whitespace_token_type whitespace;
};
namespace AST {
using operation = operation::type;
using value = double;
using variable = std::string;
struct bin_expr;
using expression = boost::variant<value, variable, boost::recursive_wrapper<bin_expr> >;
struct bin_expr {
expression lhs, rhs;
operation op;
friend std::ostream& operator<<(std::ostream& os, bin_expr const& be) {
return os << "(" << be.lhs << " " << be.op << " " << be.rhs << ")";
}
};
}
BOOST_FUSION_ADAPT_STRUCT(AST::bin_expr, lhs, op, rhs)
template<typename Iterator>
class expression_grammar : public qi::grammar<Iterator, AST::expression()>
{
public:
template<typename Tokens>
explicit expression_grammar(Tokens const& tokens)
: expression_grammar::base_type(start)
{
start = expression >> qi::eoi;
bin_sum_expr = sum_operand >> sum_operator >> expression;
bin_fac_expr = fac_operand >> fac_operator >> sum_operand;
expression = bin_sum_expr | sum_operand;
sum_operand = bin_fac_expr | fac_operand;
sum_operator = tokens.operator_add >> qi::attr(AST::operation::add) | tokens.operator_sub >> qi::attr(AST::operation::sub);
fac_operator = tokens.operator_mul >> qi::attr(AST::operation::mul) | tokens.operator_div >> qi::attr(AST::operation::div);
if(tokens.parenthesis.empty()) {
fac_operand = terminal;
}
else {
fac_operand = parenthesised | terminal;
parenthesised = tokens.parenthesis.front().first >> expression >> tokens.parenthesis.front().second;
std::for_each(tokens.parenthesis.cbegin() + 1, tokens.parenthesis.cend(),
[&](typename Tokens::parenthesis_token_pair_type const& token_pair)
{
parenthesised = parenthesised.copy() | (token_pair.first >> expression >> token_pair.second);
});
}
terminal = tokens.value | tokens.variable;
BOOST_SPIRIT_DEBUG_NODES(
(start) (expression) (bin_sum_expr) (bin_fac_expr)
(fac_operand) (terminal) (parenthesised) (sum_operand)
(sum_operator) (fac_operator)
);
}
private:
qi::rule<Iterator, AST::expression()> start;
qi::rule<Iterator, AST::expression()> expression;
qi::rule<Iterator, AST::expression()> sum_operand;
qi::rule<Iterator, AST::expression()> fac_operand;
qi::rule<Iterator, AST::expression()> terminal;
qi::rule<Iterator, AST::expression()> parenthesised;
qi::rule<Iterator, int()> sum_operator;
qi::rule<Iterator, int()> fac_operator;
// extra rules to help with AST creation
qi::rule<Iterator, AST::bin_expr()> bin_sum_expr;
qi::rule<Iterator, AST::bin_expr()> bin_fac_expr;
};
namespace RPN {
using cell = boost::variant<AST::operation, AST::value, AST::variable>;
using rpn_stack = std::vector<cell>;
struct transform : boost::static_visitor<> {
void operator()(rpn_stack& stack, AST::expression const& e) const {
boost::apply_visitor(boost::bind(*this, boost::ref(stack), ::_1), e);
}
void operator()(rpn_stack& stack, AST::bin_expr const& e) const {
(*this)(stack, e.lhs);
(*this)(stack, e.rhs);
stack.push_back(e.op);
}
void operator()(rpn_stack& stack, AST::value const& v) const { stack.push_back(v); }
void operator()(rpn_stack& stack, AST::variable const& v) const { stack.push_back(v); }
};
}
int main()
{
typedef lex::lexertl::token<std::string::const_iterator, boost::mpl::vector<operation::type, double, std::string>> token_type;
typedef expression_lexer<lex::lexertl::actor_lexer<token_type>> expression_lexer_type;
typedef expression_lexer_type::iterator_type expression_lexer_iterator_type;
typedef expression_grammar<expression_lexer_iterator_type> expression_grammar_type;
expression_lexer_type lexer;
expression_grammar_type grammar(lexer);
RPN::transform compiler;
std::string line;
while(std::getline(std::cin, line) && !line.empty())
{
std::string::const_iterator first = line.begin();
std::string::const_iterator const last = line.end();
AST::expression expr;
bool const result = lex::tokenize_and_parse(first, last, lexer, grammar, expr);
if(!result)
std::cout << "Parsing failed!
";
else
{
std::cout << "Parsing success: " << expr << "
";
RPN::rpn_stack program;
compiler(program, expr);
for (auto& instr : program) {
std::cout << instr << " ";
}
}
if(first != last)
std::cout << "Remainder: >" << std::string(first, last) << "<
";
}
}