So close, but only trial and error will get you any further. Isn't crappy documentation great?
Simply divide width
by the number of minutes in a day. Full code for your copy & paste pleasure below, but all I've done is change width = 0.5
to width = 0.5/(24*60)
.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import dates, ticker
import matplotlib as mpl
from mpl_finance import candlestick_ohlc
mpl.style.use('default')
data = [('2017-01-02 02:00:00', '1.05155', '1.05197', '1.05155', '1.0519'),
('2017-01-02 02:01:00', '1.05209', '1.05209', '1.05177', '1.05179'),
('2017-01-02 02:02:00', '1.05177', '1.05198', '1.05177', '1.05178'),
('2017-01-02 02:03:00', '1.05188', '1.052', '1.05188', '1.052'),
('2017-01-02 02:04:00', '1.05196', '1.05204', '1.05196', '1.05203'),
('2017-01-02 02:06:00', '1.05196', '1.05204', '1.05196', '1.05204'),
('2017-01-02 02:07:00', '1.05205', '1.0521', '1.05205', '1.05209'),
('2017-01-02 02:08:00', '1.0521', '1.0521', '1.05209', '1.05209'),
('2017-01-02 02:09:00', '1.05208', '1.05209', '1.05208', '1.05209'),
('2017-01-02 02:10:00', '1.05208', '1.05211', '1.05207', '1.05209')]
ohlc_data = []
for line in data:
ohlc_data.append((dates.datestr2num(line[0]), np.float64(line[1]), np.float64(line[2]), np.float64(line[3]), np.float64(line[4])))
fig, ax1 = plt.subplots()
candlestick_ohlc(ax1, ohlc_data, width = 0.5/(24*60), colorup = 'g', colordown = 'r', alpha = 0.8)
ax1.xaxis.set_major_formatter(dates.DateFormatter('%d/%m/%Y %H:%M'))
ax1.xaxis.set_major_locator(ticker.MaxNLocator(10))
plt.xticks(rotation = 30)
plt.grid()
plt.xlabel('Date')
plt.ylabel('Price')
plt.title('Historical Data EURUSD')
plt.tight_layout()
plt.show()