I want to ensure that the first value of val2
corresponding to each vintage
is NaN
. Currently two are already NaN
, but I want to ensure that 0.53
also changes to NaN
.
df = pd.DataFrame({
'vintage': ['2017-01-01', '2017-01-01', '2017-01-01', '2017-02-01', '2017-02-01', '2017-03-01'],
'date': ['2017-01-01', '2017-02-01', '2017-03-01', '2017-02-01', '2017-03-01', '2017-03-01'],
'val1': [0.59, 0.68, 0.8, 0.54, 0.61, 0.6],
'val2': [np.nan, 0.66, 0.81, 0.53, 0.62, np.nan]
})
Here's what I've tried so far:
df.groupby('vintage').first().val2 #This gives the first non-NaN values, as shown below
vintage
2017-01-01 0.66
2017-02-01 0.53
2017-03-01 NaN
df.groupby('vintage').first().val2 = np.nan #This doesn't change anything
df.val2
0 NaN
1 0.66
2 0.81
3 0.53
4 0.62
5 NaN
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…