I have binary matrices in C++ that I repesent with a vector of 8-bit values.
For example, the following matrix:
1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1
is represented as:
const uint8_t matrix[] = {
0b01010101,
0b00110011,
0b00001111,
};
The reason why I'm doing it this way is because then computing the product of such a matrix and a 8-bit vector becomes really simple and efficient (just one bitwise AND and a parity computation, per row), which is much better than calculating each bit individually.
I'm now looking for an efficient way to transpose such a matrix, but I haven't been able to figure out how to do it without having to manually calculate each bit.
Just to clarify, for the above example, I'd like to get the following result from the transposition:
const uint8_t transposed[] = {
0b00000000,
0b00000100,
0b00000010,
0b00000110,
0b00000001,
0b00000101,
0b00000011,
0b00000111,
};
NOTE: I would prefer an algorithm that can calculate this with arbitrary-sized matrices but am also interested in algorithms that can only handle certain sizes.
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…