To improve the answer of antarctician,
to display the image in 3D you need to create your point cloud first...
The RGB and Depth images give you the necessary data to create an organized colored pointcloud. To do so, you need to calculate the x,y,z values for each point. The z value comes from the depth pixel, but the x and y must be calculated.
to do it you can do something like this:
void Viewer::get_pcl(cv::Mat& color_mat, cv::Mat& depth_mat, pcl::PointCloud<pcl::PointXYZRGBA>& cloud ){
float x,y,z;
for (int j = 0; j< depth_mat.rows; j ++){
for(int i = 0; i < depth_mat.cols; i++){
// the RGB data is created
PCD_BGRA pcd_BGRA;
pcd_BGRA.B = color_mat.at<cv::Vec3b>(j,i)[0];
pcd_BGRA.R = color_mat.at<cv::Vec3b>(j,i)[2];
pcd_BGRA.G = color_mat.at<cv::Vec3b>(j,i)[1];
pcd_BGRA.A = 0;
pcl::PointXYZRGBA vertex;
int depth_value = (int) depth_mat.at<unsigned short>(j,i);
// find the world coordinates
openni::CoordinateConverter::convertDepthToWorld(depth, i, j, (openni::DepthPixel) depth_mat.at<unsigned short>(j,i), &x, &y,&z );
// the point is created with depth and color data
if ( limitx_min <= i && limitx_max >=i && limity_min <= j && limity_max >= j && depth_value != 0 && depth_value <= limitz_max && depth_value >= limitz_min){
vertex.x = (float) x;
vertex.y = (float) y;
vertex.z = (float) depth_value;
} else {
// if the data is outside the boundaries
vertex.x = bad_point;
vertex.y = bad_point;
vertex.z = bad_point;
}
vertex.rgb = pcd_BGRA.RGB_float;
// the point is pushed back in the cloud
cloud.points.push_back( vertex );
}
}
}
and PCD_BGRA is
union PCD_BGRA
{
struct
{
uchar B; // LSB
uchar G; // ---
uchar R; // MSB
uchar A; //
};
float RGB_float;
uint RGB_uint;
};
Of course, this is for the case you want to use PCL, but it is more or less the calculations of the x,y,z values stands. This relies on openni::CoordinateConverter::convertDepthToWorld
to find the position of the point in 3D. You may also do this manually
const float invfocalLength = 1.f / 525.f;
const float centerX = 319.5f;
const float centerY = 239.5f;
const float factor = 1.f / 1000.f;
float dist = factor * (float)(*depthdata);
p.x = (x-centerX) * dist * invfocalLength;
p.y = (y-centerY) * dist * invfocalLength;
p.z = dist;
Where centerX, centerY, and focallength are the intrinsic calibration of the camera (this one is for Kinect). and the factor it is if you need the distance in meters or millimeters... this value depends on your program
For the questions:
- Yes, you can display it using the latest OpenCV with the viz class or with another external library that suits your needs.
- OpenGl is nice, but PCL (or OpenCV) is easier to use if you do not know how to use any of them (I mean for displaying pointclouds)
- I haven't use it with windows, but in theory it can be used with visual studio 2012. As far as I know the version that PCL comes packed with is OpenNI 1, and it won't affect OpenNI2...
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…