Here you go!
First Dataframe:
>>> list1 = [(1, 'abc'),(2,'def')]
>>> olddf = spark.createDataFrame(list1, ['id', 'value'])
>>> olddf.show();
+---+-----+
| id|value|
+---+-----+
| 1| abc|
| 2| def|
+---+-----+
Second Dataframe:
>>> list2 = [(2, 'cde'),(3,'xyz')]
>>> newdf = spark.createDataFrame(list2, ['id', 'value'])
>>> newdf.show();
+---+-----+
| id|value|
+---+-----+
| 2| cde|
| 3| xyz|
+---+-----+
Now join and merge these two datafame using full outer join and use coalesce function while select and can replace the null values wih user defined values.
from pyspark.sql.functions import *
>>> df = olddf.join(newdf, olddf.id == newdf.id,'full_outer').select(coalesce(olddf.id,newdf.id).alias("id"),coalesce(newdf.value,olddf.value).alias("value"))
>>> df.show();
+---+-----+
| id|value|
+---+-----+
| 1| abc|
| 3| xyz|
| 2| cde|
+---+-----+
I hope this should solve your problem. :-)
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…