I want to make a project for classification of csv file using deep learning but I have faced a problem in input scaling part.
Now I have taken the dataset into two categories and that's are X_data and Y_data. Please concern below code and who know please help me,
below the imported package,
import tensorflow as tf
import keras.backend as K
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
from keras.callbacks import EarlyStopping
from keras.utils import to_categorical
import keras
import numpy as np
from keras.layers import BatchNormalization
from keras.layers import Dropout
from keras import regularizers
import pandas as pd
import sklearn
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
import matplotlib
from matplotlib import pyplot as plt
%matplotlib inline
%config InlineBackend.figure_format='retina'
Import input (x) and output (y) data, and asign these to df1 and df2
df1 = pd.read_csv('X_data.csv')
df2 = pd.read_csv('Y_data.csv')
Scale the input data
df1 = preprocessing.scale(df1) //I have faced error here
Below the error is,
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-3-aec70d746687> in <module>
1 # Scale input data
2
----> 3 df1 = preprocessing.scale(df1)
~/anaconda3/lib/python3.8/site-packages/sklearn/utils/validation.py in inner_f(*args, **kwargs)
71 FutureWarning)
72 kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})
---> 73 return f(**kwargs)
74 return inner_f
75
~/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_data.py in scale(X, axis, with_mean, with_std, copy)
139
140 """ # noqa
--> 141 X = check_array(X, accept_sparse='csc', copy=copy, ensure_2d=False,
142 estimator='the scale function', dtype=FLOAT_DTYPES,
143 force_all_finite='allow-nan')
~/anaconda3/lib/python3.8/site-packages/sklearn/utils/validation.py in inner_f(*args, **kwargs)
71 FutureWarning)
72 kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})
---> 73 return f(**kwargs)
74 return inner_f
75
~/anaconda3/lib/python3.8/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator)
597 array = array.astype(dtype, casting="unsafe", copy=False)
598 else:
--> 599 array = np.asarray(array, order=order, dtype=dtype)
600 except ComplexWarning:
601 raise ValueError("Complex data not supported
"
~/anaconda3/lib/python3.8/site-packages/numpy/core/_asarray.py in asarray(a, dtype, order)
83
84 """
---> 85 return array(a, dtype, copy=False, order=order)
86
87
ValueError: could not convert string to float: 'discrete'
# Split the data into input (x) training and testing data, and ouput (y)