Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
1.5k views
in Technique[技术] by (71.8m points)

matplotlib - Plot 4D data as layered heatmaps in Python

I would like to create layered heatmaps using (x,y,z) coordinates and a fourth dimension, color-based, to correlate to intensity.

Each layer-related data sits in a text file with columns of x, y, z and G. The delimiter is white space. Apologies if it does not present properly.

XA 200 600 1200 1800 2400 3000 200 600 1200 1800 2400 3000

YA 0 0 0 0 0 0 600 600 600 600 600 600

ZA 600 600 600 600 600 600 600 600 600 600 600 600

GA 1.27 1.54 1.49 1.34 1.27 1.25 1.28 1.96 1.12 1.06 1.06 1.06

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

data = np.load(filename)

x = np.linspace(0,2400,num=6)
y = np.linspace(0,2400,num=11)
X,Y=np.meshgrid(x,y)
Z = data[:,:,0] * 1e-3

plt.contourf(X,Y,Z)
plt.colorbar()

How to read text files, create and superimpose heatmaps along the Z-axis?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Say you have two txt files, namely data-z600.txt and data-z1200.txt, in the same folder as your python script, whose contents are exactly

data-z600.txt (yours)

XA YA ZA GA
200 0 600 1.27
600 0 600 1.54
1200 0 600 1.49
1800 0 600 1.34
2400 0 600 1.27
3000 0 600 1.25
200 600 600 1.28
600 600 600 1.96
1200 600 600 1.12
1800 600 600 1.06
2400 600 600 1.06
3000 600 600 1.06

and data-z1200.txt (invented on purpose)

XA YA ZA GA
200 0 1200 1.31
600 0 1200 2
1200 0 1200 1.63
1800 0 1200 1.36
2400 0 1200 1.31
3000 0 1200 1.35
200 600 1200 1.38
600 600 1200 1.36
1200 600 1200 1.2
1800 600 1200 1.1
2400 600 1200 1.1
3000 600 1200 1.11

Let's import all the required libraries

# libraries
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import scipy.interpolate as si
from matplotlib import cm
import pandas as pd
import numpy as np

and define grids_maker, a function that does the job of preparing data contained in a given file, here targeted via the filepath argument.

def grids_maker(filepath):
    # Get the data
    df = pd.read_csv(filepath, sep=' ')

    # Make things more legible
    xy = df[['XA', 'YA']]
    x  = xy.XA
    y  = xy.YA
    z  = df.ZA
    g  = df.GA
    reso_x = reso_y = 50
    interp = 'cubic' # or 'nearest' or 'linear'

    # Convert the 4d-space's dimensions into grids
    grid_x, grid_y = np.mgrid[
        x.min():x.max():1j*reso_x,
        y.min():y.max():1j*reso_y
    ]

    grid_z = si.griddata(
        xy, z.values,
        (grid_x, grid_y),
        method=interp
    )

    grid_g = si.griddata(
        xy, g.values,
        (grid_x, grid_y),
        method=interp
    )

    return {
        'x' : grid_x,
        'y' : grid_y,
        'z' : grid_z,
        'g' : grid_g,
    }

Let's use grids_maker over our list of files and get the extrema of each file's 4th dimension.

# Let's retrieve all files' contents
fgrids = dict.fromkeys([
    'data-z600.txt',
    'data-z1200.txt'
])
g_mins = []
g_maxs = []

for fpath in fgrids.keys():
    fgrids[fpath] = grids = grids_maker(fpath)
    g_mins.append(grids['g'].min())
    g_maxs.append(grids['g'].max())

Let's create our (all-file unifying) color-scale

# Create the 4th color-rendered dimension
scam = plt.cm.ScalarMappable(
    norm=cm.colors.Normalize(min(g_mins), max(g_maxs)),
    cmap='jet' # see https://matplotlib.org/examples/color/colormaps_reference.html
)

... and finally make/show the plot

# Make the plot
fig = plt.figure()
ax  = fig.gca(projection='3d')
for grids in fgrids.values(): 
    scam.set_array([])   
    ax.plot_surface(
        grids['x'], grids['y'], grids['z'],
        facecolors  = scam.to_rgba(grids['g']),
        antialiased = True,
        rstride=1, cstride=1, alpha=None
    )
plt.show()

enter image description here


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...