In ImageTransformation[f,img]
, the function f
is such that a point {x,y}
in the resulting image corresponds to f[{x,y}]
in img
. Since the resulting image is basically the polar transformation of img
, f
should be the inverse polar transformation, so you could do something like
anamorphic[img_, angle_: 270 Degree] :=
Module[{dim = ImageDimensions[img], rInner = 1, rOuter},
rOuter = rInner (1 + angle dim[[2]]/dim[[1]]);
ImageTransformation[img,
Function[{pt}, {ArcTan[-#2, #1] & @@ pt, Norm[pt]}],
DataRange -> {{-angle/2, angle/2}, {rInner, rOuter}},
PlotRange -> {{-rOuter, rOuter}, {-rOuter, rOuter}},
Padding -> White
]
]
The resulting image looks something like
anamorphic[ExampleData[{"TestImage", "Lena"}]]
Note that you can a similar result with ParametricPlot
and TextureCoordinateFunction
, e.g.
anamorphic2[img_Image, angle_: 270 Degree] :=
Module[{rInner = 1,rOuter},
rOuter = rInner (1 + angle #2/#1 & @@ ImageDimensions[img]);
ParametricPlot[{r Sin[t], -r Cos[t]}, {t, -angle/2, angle/2},
{r, rInner, rOuter},
TextureCoordinateFunction -> ({#3, #4} &),
PlotStyle -> {Opacity[1], Texture[img]},
Mesh -> None, Axes -> False,
BoundaryStyle -> None,
Frame -> False
]
]
anamorphic2[ExampleData[{"TestImage", "Lena"}]]
Edit
In answer to Mr.Wizard's question, if you don't have access to ImageTransformation
or Texture
you could transform the image data by hand by doing something like
anamorph3[img_, angle_: 270 Degree, imgWidth_: 512] :=
Module[{data, f, matrix, dim, rOuter, rInner = 1.},
dim = ImageDimensions[img];
rOuter = rInner (1 + angle #2/#1 & @@ dim);
data = Table[
ListInterpolation[#[[All, All, i]],
{{rOuter, rInner}, {-angle/2, angle/2}}], {i, 3}] &@ImageData[img];
f[i_, j_] := If[Abs[j] <= angle/2 && rInner <= i <= rOuter,
Through[data[i, j]], {1., 1., 1.}];
Image@Table[f[Sqrt[i^2 + j^2], ArcTan[i, -j]],
{i, -rOuter, rOuter, 2 rOuter/(imgWidth - 1)},
{j, -rOuter, rOuter, 2 rOuter/(imgWidth - 1)}]]
Note that this assumes that img
has three channels. If the image has fewer or more channels, you need to adapt the code.