Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
915 views
in Technique[技术] by (71.8m points)

python - Show dates on seaborn heatmap

I am trying to create a heat map from pandas dataframe using seaborn library. Here, is the code:

test_df = pd.DataFrame(np.random.randn(367, 5), 
                 index = pd.DatetimeIndex(start='01-01-2000', end='01-01-2001', freq='1D'))

ax = sns.heatmap(test_df.T)
ax.xaxis.set_major_locator(mdates.MonthLocator())
ax.xaxis.set_minor_locator(mdates.DayLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b'))
ax.xaxis.set_minor_formatter(mdates.DateFormatter('%d'))

However, I am getting a figure with nothing printed on the x-axis.

enter image description here

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Seaborn heatmap is a categorical plot. It scales from 0 to number of columns - 1, in this case from 0 to 366. The datetime locators and formatters expect values as dates (or more precisely, numbers that correspond to dates). For the year in question that would be numbers between 730120 (= 01-01-2000) and 730486 (= 01-01-2001).

So in order to be able to use matplotlib.dates formatters and locators, you would need to convert your dataframe index to datetime objects first. You can then not use a heatmap, but a plot that allows for numerical axes, e.g. an imshow plot. You may then set the extent of that imshow plot to correspond to the date range you want to show.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates

df = pd.DataFrame(np.random.randn(367, 5), 
                 index = pd.DatetimeIndex(start='01-01-2000', end='01-01-2001', freq='1D'))

dates = df.index.to_pydatetime()
dnum = mdates.date2num(dates)
start = dnum[0] - (dnum[1]-dnum[0])/2.
stop = dnum[-1] + (dnum[1]-dnum[0])/2.
extent = [start, stop, -0.5, len(df.columns)-0.5]

fig, ax = plt.subplots()
im = ax.imshow(df.T.values, extent=extent, aspect="auto")

ax.xaxis.set_major_locator(mdates.MonthLocator())
ax.xaxis.set_minor_locator(mdates.DayLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b'))

fig.colorbar(im)
plt.show()

enter image description here


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...