Seaborn heatmap
is a categorical plot. It scales from 0
to number of columns - 1
, in this case from 0
to 366
. The datetime locators and formatters expect values as dates (or more precisely, numbers that correspond to dates). For the year in question that would be numbers between 730120
(= 01-01-2000) and 730486
(= 01-01-2001).
So in order to be able to use matplotlib.dates formatters and locators, you would need to convert your dataframe index to datetime objects first. You can then not use a heatmap, but a plot that allows for numerical axes, e.g. an imshow
plot. You may then set the extent of that imshow plot to correspond to the date range you want to show.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
df = pd.DataFrame(np.random.randn(367, 5),
index = pd.DatetimeIndex(start='01-01-2000', end='01-01-2001', freq='1D'))
dates = df.index.to_pydatetime()
dnum = mdates.date2num(dates)
start = dnum[0] - (dnum[1]-dnum[0])/2.
stop = dnum[-1] + (dnum[1]-dnum[0])/2.
extent = [start, stop, -0.5, len(df.columns)-0.5]
fig, ax = plt.subplots()
im = ax.imshow(df.T.values, extent=extent, aspect="auto")
ax.xaxis.set_major_locator(mdates.MonthLocator())
ax.xaxis.set_minor_locator(mdates.DayLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b'))
fig.colorbar(im)
plt.show()
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…