I'm having trouble giving the right input to the scipy.signal.dlsim
method.
The method requires the 4 state space matrices:
A = np.array([
[0.9056, -0.1908, 0.0348, 0.0880],
[0.0973, 0.8728, 0.4091, -0.0027],
[0.0068, -0.1694, 0.9729, -0.6131],
[-0.0264, 0.0014, 0.1094, 0.6551]
])
B = np.array([
[0, -0.0003, -0.0330, -0.0042, -0.0037],
[0, -0.0005, 0.0513, -0.0869, -0.1812],
[0, 0.0003, -0.0732, 1.1768, -1.1799],
[0, -0.0002, -0.0008, 0.2821, -0.4797]
])
C = np.array([-0.01394, -0.0941, 0.0564, 0.0435])
D = np.array([0, 0.0004, -0.0055, 0.3326, 0.5383])
and an input vector which I build in the following way:
inputs = np.array([
data['input1'].values(),
data['input2'].values(),
data['input3'].values(),
data['input4'].values(),
data['input5'].values()
])
This creates an inputs matrix with (5x752)
dimensions (I have 752 data points). So I take the transpose of the inputs matrix to preprocess my data:
inputs = np.transpose(inputs)
The inputs matrix now has the (752x5)
dimensions I presume are necessary for the simulation algorithm of scipy.
When I execute the method, I get the following error:
110 # Simulate the system
111 for i in range(0, out_samples - 1):
--> 112 xout[i+1,:] = np.dot(a, xout[i,:]) + np.dot(b, u_dt[i,:])
113 yout[i,:] = np.dot(c, xout[i,:]) + np.dot(d, u_dt[i,:])
114
ValueError: shapes (4,5) and (1,5) not aligned: 5 (dim 1) != 1 (dim 0)
I understand scipy is unable to make this multiplication but I do not know in which format I should give my inputs array to the method. If I would not transpose the matrix the dimensions would be even worse (1x752).
Am I missing something here?
See Question&Answers more detail:
os