Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
804 views
in Technique[技术] by (71.8m points)

python - grouping consecutive rows in PySpark Dataframe

I have the following example Spark DataFrame:

rdd = sc.parallelize([(1,"19:00:00", "19:30:00", 30), (1,"19:30:00", "19:40:00", 10),(1,"19:40:00", "19:43:00", 3), (2,"20:00:00", "20:10:00", 10), (1,"20:05:00", "20:15:00", 10),(1,"20:15:00", "20:35:00", 20)])
df = spark.createDataFrame(rdd, ["user_id", "start_time", "end_time", "duration"])
df.show()

+-------+----------+--------+--------+
|user_id|start_time|end_time|duration|
+-------+----------+--------+--------+
|      1|  19:00:00|19:30:00|      30|
|      1|  19:30:00|19:40:00|      10|
|      1|  19:40:00|19:43:00|       3|
|      2|  20:00:00|20:10:00|      10|
|      1|  20:05:00|20:15:00|      10|
|      1|  20:15:00|20:35:00|      20|
+-------+----------+--------+--------+

I want to group consecutive rows based on the start and end times. For instance, for the same user_id, if a row's start time is the same as the previous row's end time, I want to group them together and sum the duration.

The desired result is:

+-------+----------+--------+--------+
|user_id|start_time|end_time|duration|
+-------+----------+--------+--------+
|      1|  19:00:00|19:43:00|      43|
|      2|  20:00:00|20:10:00|      10|
|      1|  20:05:00|20:35:00|      30|
+-------+----------+--------+--------+

The first three rows of the dataframe were grouped together because they all correspond to user_id 1 and the start times and end times form a continuous timeline.

This was my initial approach:

Use the lag function to get the next start time:

from pyspark.sql.functions import *
from pyspark.sql import Window
import sys
# compute next start time 
window = Window.partitionBy('user_id').orderBy('start_time')
df = df.withColumn("next_start_time", lag(df.start_time, -1).over(window))

df.show()

+-------+----------+--------+--------+---------------+
|user_id|start_time|end_time|duration|next_start_time|
+-------+----------+--------+--------+---------------+
|      1|  19:00:00|19:30:00|      30|       19:30:00|
|      1|  19:30:00|19:40:00|      10|       19:40:00|
|      1|  19:40:00|19:43:00|       3|       20:05:00|
|      1|  20:05:00|20:15:00|      10|       20:15:00|
|      1|  20:15:00|20:35:00|      20|           null|
|      2|  20:00:00|20:10:00|      10|           null|
+-------+----------+--------+--------+---------------+

get the difference between the current row's end time and the next row's start time:

time_fmt = "HH:mm:ss"
timeDiff = unix_timestamp('next_start_time', format=time_fmt) - unix_timestamp('end_time', format=time_fmt) 

df = df.withColumn("difference", timeDiff)
df.show()

+-------+----------+--------+--------+---------------+----------+
|user_id|start_time|end_time|duration|next_start_time|difference|
+-------+----------+--------+--------+---------------+----------+
|      1|  19:00:00|19:30:00|      30|       19:30:00|         0|
|      1|  19:30:00|19:40:00|      10|       19:40:00|         0|
|      1|  19:40:00|19:43:00|       3|       20:05:00|      1320|
|      1|  20:05:00|20:15:00|      10|       20:15:00|         0|
|      1|  20:15:00|20:35:00|      20|           null|      null|
|      2|  20:00:00|20:10:00|      10|           null|      null|
+-------+----------+--------+--------+---------------+----------+

Now my idea was to use the sum function with a window to get the cumulative sum of duration and then do a groupBy. But my approach was flawed for many reasons.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Here's one approach:

Gather together rows into groups where a group is a set of rows with the same user_id that are consecutive (start_time matches previous end_time). Then you can use this group to do your aggregation.

A way to get here is by creating intermediate indicator columns to tell you if the user has changed or the time is not consecutive. Then perform a cumulative sum over the indicator column to create the group.

For example:

import pyspark.sql.functions as f
from pyspark.sql import Window

w1 = Window.orderBy("start_time")
df = df.withColumn(
        "userChange",
        (f.col("user_id") != f.lag("user_id").over(w1)).cast("int")
    )
    .withColumn(
        "timeChange",
        (f.col("start_time") != f.lag("end_time").over(w1)).cast("int")
    )
    .fillna(
        0,
        subset=["userChange", "timeChange"]
    )
    .withColumn(
        "indicator",
        (~((f.col("userChange") == 0) & (f.col("timeChange")==0))).cast("int")
    )
    .withColumn(
        "group",
        f.sum(f.col("indicator")).over(w1.rangeBetween(Window.unboundedPreceding, 0))
    )
df.show()
#+-------+----------+--------+--------+----------+----------+---------+-----+
#|user_id|start_time|end_time|duration|userChange|timeChange|indicator|group|
#+-------+----------+--------+--------+----------+----------+---------+-----+
#|      1|  19:00:00|19:30:00|      30|         0|         0|        0|    0|
#|      1|  19:30:00|19:40:00|      10|         0|         0|        0|    0|
#|      1|  19:40:00|19:43:00|       3|         0|         0|        0|    0|
#|      2|  20:00:00|20:10:00|      10|         1|         1|        1|    1|
#|      1|  20:05:00|20:15:00|      10|         1|         1|        1|    2|
#|      1|  20:15:00|20:35:00|      20|         0|         0|        0|    2|
#+-------+----------+--------+--------+----------+----------+---------+-----+

Now that we have the group column, we can aggregate as follows to get the desired result:

df.groupBy("user_id", "group")
    .agg(
        f.min("start_time").alias("start_time"),
        f.max("end_time").alias("end_time"),
        f.sum("duration").alias("duration")
    )
    .drop("group")
    .show()
#+-------+----------+--------+--------+
#|user_id|start_time|end_time|duration|
#+-------+----------+--------+--------+
#|      1|  19:00:00|19:43:00|      43|
#|      1|  20:05:00|20:35:00|      30|
#|      2|  20:00:00|20:10:00|      10|
#+-------+----------+--------+--------+

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...