Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
1.4k views
in Technique[技术] by (71.8m points)

scala - Explode multiple columns in Spark SQL table

There was a question regarding this issue here:

Explode (transpose?) multiple columns in Spark SQL table

Suppose that we have extra columns as below:

**userId    someString      varA     varB      varC    varD**
   1        "example1"    [0,2,5]   [1,2,9]    [a,b,c] [red,green,yellow]
   2        "example2"    [1,20,5]  [9,null,6] [d,e,f] [white,black,cyan]

To conclude an output like below:

userId    someString      varA     varB   varC     varD
   1      "example1"       0         1     a       red
   1      "example1"       2         2     b       green
   1      "example1"       5         9     c       yellow
   2      "example2"       1         9     d       white
   2      "example2"       20       null   e       black
   2      "example2"       5         6     f       Cyan

The answer was by defining a udf as:

val zip = udf((xs: Seq[Long], ys: Seq[Long]) => xs.zip(ys))

and defining "withColumn".

df.withColumn("vars", explode(zip($"varA", $"varB"))).select(
   $"userId", $"someString",
   $"vars._1".alias("varA"), $"vars._2".alias("varB")).show

If we need to extend the above answer, with more columns, what is the easiest way to amend the above code. Any help please.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

I am assuming that the size of varA,varB,varC,varD remains same from your example.

scala> case class Input(user_id : Integer,someString : String, varA : Array[Integer],varB : Array[Integer],varC : Array[String], varD : Array[String])
defined class Input

scala> case class Result(user_id : Integer,someString : String , varA : Integer,varB : Integer,varC : String, varD : String)
defined class Result

scala> val obj1 = Input(1,"example1",Array(0,2,5),Array(1,2,9),Array("a","b","c"),Array("red","green","yellow"))
obj1: Input = Input(1,example1,[Ljava.lang.Integer;@77c43ec2,[Ljava.lang.Integer;@3a332d08,[Ljava.lang.String;@5c1222da,[Ljava.lang.String;@114e051a)

scala> val obj2 = Input(2,"example2",Array(1,20,5),Array(9,null,6),Array("d","e","f"),Array("white","black","cyan"))
obj2: Input = Input(2,example2,[Ljava.lang.Integer;@326db38,[Ljava.lang.Integer;@50914458,[Ljava.lang.String;@339b73ae,[Ljava.lang.String;@1567ee0a)

scala> val input_df = sc.parallelize(Seq(obj1,obj2)).toDS
input_df: org.apache.spark.sql.Dataset[Input] = [user_id: int, someString: string ... 4 more fields]

scala> input_df.show
+-------+----------+----------+------------+---------+--------------------+
|user_id|someString|      varA|        varB|     varC|                varD|
+-------+----------+----------+------------+---------+--------------------+
|      1|  example1| [0, 2, 5]|   [1, 2, 9]|[a, b, c]|[red, green, yellow]|
|      2|  example2|[1, 20, 5]|[9, null, 6]|[d, e, f]|[white, black, cyan]|
+-------+----------+----------+------------+---------+--------------------+

scala> def getResult(row : Input) : Iterable[Result] = {
     |             val user_id = row.user_id
     |             val someString = row.someString
     |             val varA = row.varA
     |             val varB = row.varB
     |             val varC = row.varC
     |             val varD = row.varD
     |             val seq = for( i <- 0 until varA.size) yield {Result(user_id,someString,varA(i),varB(i),varC(i),varD(i))}
     |             seq.toSeq
     |         }
getResult: (row: Input)Iterable[Result]

scala> val resdf = input_df.flatMap{row => getResult(row)}
resdf: org.apache.spark.sql.Dataset[Result] = [user_id: int, someString: string ... 4 more fields]

scala> resdf.show
+-------+----------+----+----+----+------+
|user_id|someString|varA|varB|varC|  varD|
+-------+----------+----+----+----+------+
|      1|  example1|   0|   1|   a|   red|
|      1|  example1|   2|   2|   b| green|
|      1|  example1|   5|   9|   c|yellow|
|      2|  example2|   1|   9|   d| white|
|      2|  example2|  20|null|   e| black|
|      2|  example2|   5|   6|   f|  cyan|
+-------+----------+----+----+----+------+

If the size of columns varA,varB,varC or varD is different then those scenarios need to be handles.

You could iterate over the max size and output null values if values are not present in any columns by handling exceptions.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...