Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
510 views
in Technique[技术] by (71.8m points)

python - pandas merge on date column issue

I am trying to merge two dataframes on date column (tried both as type object or datetime.date, but fails to give desired merge output:

import pandas as pd
df1 =  pd.DataFrame({'amt': {0: 1549367.9496070854,
      1: 2175801.78219801,
      2: 1915613.1629125737,
      3: 1703063.8323954903,
      4: 1770040.7987461537},
     'month': {0: '2015-02-01',
      1: '2015-03-01',
      2: '2015-04-01',
      3: '2015-05-01',
      4: '2015-06-01'}})
print(df1)


        amt             month
    0   1.549368e+06    2015-02-01
    1   2.175802e+06    2015-03-01
    2   1.915613e+06    2015-04-01
    3   1.703064e+06    2015-05-01
    4   1.770041e+06    2015-06-01



df2 =  {'factor': {datetime.date(2015, 2, 1): 1.0,
      datetime.date(2015, 3, 1): 1.0,
      datetime.date(2015, 4, 1): 1.0,
      datetime.date(2015, 5, 1): 1.0,
      datetime.date(2015, 6, 1): 0.99889679025914435},
     'month': {datetime.date(2015, 2, 1): datetime.date(2015, 2, 1),
      datetime.date(2015, 3, 1): datetime.date(2015, 3, 1),
      datetime.date(2015, 4, 1): datetime.date(2015, 4, 1),
      datetime.date(2015, 5, 1): datetime.date(2015, 5, 1),
      datetime.date(2015, 6, 1): datetime.date(2015, 6, 1)}}
df2 = pd.DataFrame(df2)
print(df2)

                factor      month
    2015-02-01  1.000000    2015-02-01
    2015-03-01  1.000000    2015-03-01
    2015-04-01  1.000000    2015-04-01
    2015-05-01  1.000000    2015-05-01
    2015-06-01  0.998897    2015-06-01


pd.merge(df2, df1, how='outer', on='month')

        factor       month            amt
    0   1.000000     2015-02-01      NaN
    1   1.000000     2015-03-01      NaN
    2   1.000000     2015-04-01      NaN
    3   1.000000     2015-05-01      NaN
    4   0.998897     2015-06-01      NaN
    5   NaN           2015-02-01    1.549368e+06
    6   NaN           2015-03-01    2.175802e+06
    7   NaN           2015-04-01    1.915613e+06
    8   NaN           2015-05-01    1.703064e+06
    9   NaN           2015-06-01    1.770041e+06
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

I think you need first convert both columns to_datetime because need same dtypes:

df1.month = pd.to_datetime(df1.month)
df2.month = pd.to_datetime(df2.month)

print (pd.merge(df2, df1, how='outer', on='month'))
     factor      month           amt
0  1.000000 2015-02-01  1.549368e+06
1  1.000000 2015-03-01  2.175802e+06
2  1.000000 2015-04-01  1.915613e+06
3  1.000000 2015-05-01  1.703064e+06
4  0.998897 2015-06-01  1.770041e+06

#convert to str date column
df2.month = df2.month.astype(str)

print (pd.merge(df2, df1, how='outer', on='month'))
     factor       month           amt
0  1.000000  2015-02-01  1.549368e+06
1  1.000000  2015-03-01  2.175802e+06
2  1.000000  2015-04-01  1.915613e+06
3  1.000000  2015-05-01  1.703064e+06
4  0.998897  2015-06-01  1.770041e+06

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...