nan
is a floating-point value. When x
is an array with integer dtype, it can not be assigned a nan value. When nan
is assigned to an array of integer dtype, the value is automatically converted to an int:
In [85]: np.array(np.nan).astype(int).item()
Out[85]: -9223372036854775808
So to fix your code, make x
an array of float dtype:
x = numpy.array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]],
dtype=float)
import numpy
x = numpy.array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]],
dtype=float)
cutoff = [5, 7]
for i in range(len(x)):
x[i][0:cutoff[i]:1] = numpy.nan
print(x)
yields
array([[ nan, nan, nan, nan, nan, 5., 6., 7., 8., 9.],
[ nan, nan, nan, nan, nan, nan, nan, 0., 1., 0.]])