Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
402 views
in Technique[技术] by (71.8m points)

python 3.x - Linear Programming - Google ortools - incorrect decision variable final values

I am trying to solve a linear programming problem. Following are specs of the problem:

I have a network flow problem that's been converted to a linear programming problem. So, all the flow constraints, such as capacity, flow conservation etc., will have to be enforced. My objective is to minimize cost.

Decision Variables - I have built two 8x8 matrices by defining a dictionary and adding decision variable at each of those 128 locations.

Constraints - there are in total 24 constraints, namely: 1) The flow starts at the source. 2 constraints for both 8x8 matrices. 2) The flow ends at the sink. 2 constraints for both 8x8 matrices. 3) There are 12 constraints for flow conservation, 8 each for both matrices. 4) There are 2 constraints to respect the capacity constraint, 1 for each matrix. 5) There are 6 constraints to avoid duplication

All the variables are required to be binary.

Objective - There are certain variables from those 8x8 matrices whose sum is required to be minimized.

Again, all the variables have to be binary.

I have been able to code the solution in Google ORTOOLS and solution converges and shows minimum value. But, when I look at the variables, there are variables that have non-binary values. Also, the solution is wrong (I have an existing solution running in excel which is correct and is different).

I'd appreciate if someone could point me in the right direction. Following is the code which is written in Python 36.

    from ortools.linear_solver import pywraplp
import numpy as np

def configure_constraints(cfg, solver, variable_list):

    print(cfg)
    dest_convs = cfg['dest_convs']
    msize = cfg['lookback_win'] + 1 + 1
    rem_capacity = cfg['rem_caps']

    # Constraint 1 - Flow starts at the source
    for i in range(dest_convs):
        # print([(i, 0, c) for c in range(1, msize)])
        solver.Add(solver.Sum([variable_list[(i,0,c)] for c in range(1, msize)]) == 1)

    # Constraint 2 - Flow ends at the sink
    for i in range(dest_convs):
        # print([(i, r, msize - 1) for r in range(1, msize)])
        solver.Add(solver.Sum([variable_list[(i,r,msize - 1)] for r in range(1, msize)]) == 1)

    # Constraint 3 - Flow Conservation
    for i in range(dest_convs):
        for r in range(msize - 1):
            if r+1 == msize - 1:
                continue

            solver.Add(solver.Sum([variable_list[(i,rind, r+1)] for rind in range(r + 1)]) - solver.Sum([variable_list[(i,r+1, cind + 1)] for cind in range(r+1, msize - 1)]) == 0)
    #
    # # Constraint 4 - Capacity Constraint
    for i in range(dest_convs):
        solver.Add(solver.Sum([variable_list[(i, r, c)] for r in range(1, msize-1) for c in range(r+1, msize - 1)]) <= rem_capacity[i] - 1)

    #
    # # Constraint 5 - 1-vehicle, 1-conveyor
    dest_conv_list = []
    for i in range(dest_convs):
        dest_conv_list.append([])
        for r in range(1, msize - 1):
            dest_conv_list[i].append(sum([variable_list[(i,r,c)] for c in range(r+1, msize)]))

    for items in zip(*dest_conv_list):
        solver.Add(solver.Sum(items) == 1)



def configure_objective(solver, variable_list, cost_vars):
    # Objective
    solver.Minimize(solver.Sum([variable_list[items] for items in zip(*np.where(cost_vars))]))


def solve(solver):
    result_status = solver.Solve()
    return result_status

def configure_variables(cfg, solver):

    # identify variables for the objective function
    # print(cfg)
    nvehs = cfg['vehicles']
    dest_convs = cfg['dest_convs']
    color_vec = cfg['color_vec']
    cur_cars = cfg['cur_cars']
    msize = cfg['lookback_win'] + 1 + 1

    # objective_mat = np.zeros((msize, msize), dtype="int32")
    mat = [[[0] * msize for i in range(msize)] for j in range(dest_convs)]

    # source to vehicles
    for i in range(dest_convs):
        for j in range(nvehs):
            # print(color_vec[j], cur_cars[i])
            if color_vec[j] != cur_cars[i]:
                mat[i][0][j+1] = 1


    for h in range(dest_convs):
        for i in range(0, nvehs):
            for j in range(i+1, nvehs):
                # print(i+1,j+1)
                # print(color_vec[i+1], color_vec[j])
                if color_vec[i] != color_vec[j]:
                    mat[h][i+1][j + 1] = 1

    cost_vars = np.array(mat).reshape(dest_convs, msize, msize)
    print(np.array(mat).reshape(dest_convs,msize,msize))

    dvars = {}
    for i in range(dest_convs):
        for j in range(msize):
            for k in range(msize):
                dvars[i, j, k] = solver.BoolVar('x[%i,%i, %i]' % (i, j, k))


    return  dvars, cost_vars

def main(cfg, what):
    solver = pywraplp.Solver('SolveSimpleSystem', pywraplp.Solver.GLOP_LINEAR_PROGRAMMING)

    dvars_list, cost_vars = configure_variables(cfg, solver)

    configure_constraints(cfg, solver, dvars_list)
    configure_objective(solver, dvars_list, cost_vars)

    result_status = solve(solver)

    print('Number of Variables:', solver.NumVariables())
    print('Number of Constraints:', solver.NumConstraints())
    # print('Constraints:',     solver.)

    if result_status == solver.OPTIMAL:
        print('Solution Found.')
        # The problem has an optimal solution.
        print(('Problem solved in %f milliseconds' % solver.wall_time()))
        # The objective value of the solution.
        print(('Optimal objective value = %f' % solver.Objective().Value()))

        var_sum = 0
        for variable in dvars_list:
            print(('%s = %f' % (dvars_list[variable].name(), dvars_list[variable].solution_value())))
            var_sum += dvars_list[variable].solution_value()

        print(('Variable sum = %f' % var_sum))

        # The value of each variable in the solution.
    elif result_status == solver.INFEASIBLE:
        print('No solution found.')
    elif result_status == solver.POSSIBLE_OVERFLOW:
        print('Some inputs are too large and may cause an integer overflow.')


if __name__ == '__main__':
    cfg = {'vehicles': 6,
           'dest_convs': 2,
           'cur_cars':['B', 'R'],
           'rem_caps': [3,3],
           'lookback_win':6,
           'color_vec': ['W', 'W', 'B', 'B', 'R', 'B'],
           }

    main(cfg, 'cost')
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

See: https://groups.google.com/forum/#!msg/or-tools-discuss/p5qVzZWIeIg/g77egaD-AAAJ

Glop is a pure LP. It will only solve the relaxation of the mip problem. So it is normal that the error checker tells you that the solution is not integral.

You can change GLOP_LINEAR_PROGRAMMING to BOP_INTEGER_PROGRAMMING if you program is purely boolean. Or you can stay with CBC

That's why you should use either:

  • pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING
  • pywraplp.Solver.BOP_INTEGER_PROGRAMMING
  • pywraplp.Solver.SAT_INTEGER_PROGRAMMING

instead of pywraplp.Solver.GLOP_LINEAR_PROGRAMMING.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...