Shuffle / blend on FP values are not considered FLOPs. They are just overhead of using SIMD on not purely "vertical" problems, or for problems with branching that you do branchlessly with a blend.
Neither are FP AND/OR/XOR. You could try to justify counting FP absolute value using andps
(_mm_and_ps
), but normally it's not counted. FP abs doesn't require looking at the exponent / significand, or normalizing the result, or any of the things that make FP execution units expensive. abs (AND) / sign-flip (XOR) or make negative (OR) are trivial bitwise ops.
FMA is normally counted as two floating point ops (the mul and add), even though it's a single instruction with the same (or similar) performance to SIMD FP add or mul. The most important problem that bottlenecks on raw FLOP/s
is matmul, which does need an equal mix of mul and add, and can take advantage of FMA perfectly.
So the FLOP/s of a Haswell core is
- its SIMD vector width (8
float
elements per vector)
- times SIMD FMA per clock (2)
- times FLOPs per FMA (2)
- times clock speed (max single core turbo it can sustain while maxing out both FMA units; long-term depends on cooling, short term just depends on power limits).
For a whole CPU, not just a single core: multiply by number of cores and use the max sustained clock speed with all cores busy, usually lower than single-core turbo on CPUs that have turbo at all.)
Intel and other CPU vendors don't count the fact that their CPUs can also sustain a vandps
in parallel with 2 vfma132ps
instructions per clock, because FP abs is not a difficult operation.
See also How do I achieve the theoretical maximum of 4 FLOPs per cycle?. (It's actually more than 4 on modern CPUs :P)
Peak FLOPS (FP ops per second, or FLOP/s) isn't achievable if you have much other overhead taking up front-end bandwidth or creating other bottlenecks. The metric is just the raw amount of math you can do when running in a straight line, not on any specific practical problem.
Although people would think it's silly if theoretical peak flops is much higher than a carefully hand-tuned matmul or Mandelbrot could ever achieve, even for compile-time-constant problem sizes. e.g. if the front-end couldn't keep up with doing any stores as well as the FMAs. e.g. if Haswell had four FMA execution units, so it could only sustain max FLOPs if literally every instruction was an FMA. Memory source operands could micro-fuse for loads, but there'd be no room to store without hurting throughput.
The reason Intel doesn't have even 3 FMA units is that most real code has trouble saturating 2 FMA units, especially with only 2 load ports and 1 store port. They'd be wasted almost all of the time, and 256-bit FMA unit takes a lot of transistors.
(Ice Lake widens issue/rename stage of the pipeline to 5 uops/clock, but also widens SIMD execution units to 512-bit with AVX-512 instead of adding a 3rd 256-bit FMA unit. It has 2/clock load and 2/clock store, although that store throughput is only sustainable to L1d cache for 32-byte or narrower stores, not 64-byte.)