I have a correlation matrix calculated as follow on pyspark 2.2:
from pyspark.ml.linalg import Vectors
from pyspark.ml.stat import Correlation
from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
datos = sql("""select * from proceso_riesgos.jdgc_bd_train_mn_ingresos""")
Variables_corr= ['ingreso_final_mix','ingreso_final_promedio',
'ingreso_final_mediana','ingreso_final_trimedia','ingresos_serv_q1',
'ingresos_serv_q2','ingresos_serv_q3','prom_ingresos_serv','y_correc']
assembler = VectorAssembler(
inputCols=Variables_corr,
outputCol="features")
datos1=datos.select(Variables_corr).filter("y_correc is not null")
output = assembler.transform(datos)
r1 = Correlation.corr(output, "features")
the result is a data frame with a variable called "pearson(features): matrix":
Row(pearson(features)=DenseMatrix(20, 20, [1.0, 0.9428, 0.8908, 0.913,
0.567, 0.5832, 0.6148, 0.6488, ..., -0.589, -0.6145, -0.5906, -0.5534,
-0.5346, -0.0797, -0.617, 1.0], False))]
I need to take those values and export it to an excel, or to be able to manipulate the result.
A list could be desiderable.
Thanks for help!!
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…