df2.combine_first(df1)
(documentation)
seems to serve your requirement; PFB code snippet & output
import pandas as pd
print 'pandas-version: ', pd.__version__
df1 = pd.DataFrame.from_records([('2015-07-09 12:00:00',1,1,1),
('2015-07-09 13:00:00',1,1,1),
('2015-07-09 14:00:00',1,1,1),
('2015-07-09 15:00:00',1,1,1)],
columns=['Dt', 'A', 'B', 'C']).set_index('Dt')
# print df1
df2 = pd.DataFrame.from_records([('2015-07-09 14:00:00',2,2,2,2),
('2015-07-09 15:00:00',2,2,2,2),
('2015-07-09 16:00:00',2,2,2,2),
('2015-07-09 17:00:00',2,2,2,2),],
columns=['Dt', 'A', 'B', 'C', 'D']).set_index('Dt')
res_combine1st = df2.combine_first(df1)
print res_combine1st
output
pandas-version: 0.15.2
A B C D
Dt
2015-07-09 12:00:00 1 1 1 NaN
2015-07-09 13:00:00 1 1 1 NaN
2015-07-09 14:00:00 2 2 2 2
2015-07-09 15:00:00 2 2 2 2
2015-07-09 16:00:00 2 2 2 2
2015-07-09 17:00:00 2 2 2 2
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…